software .
SElEl©:

thoughts on software process

Daniel Jackson

process orderings

local vs global process

00 0O

00 N N

4 \4

global ordering of phases local ordering of phases

risks

risk-driven development

Risk = Prob(failure) x Cost(failure)

a strategy
> list failures & determine their risks
> devise a strategy to reduce highest risks

sample failures: how would you mitigate?
performance is unacceptable

product is unusable because its too complex
customer changes mind about what product does
developer solves the wrong problem

>

>

>

>

prog
com
prog

uct fails in catastrophic way
betitor beats you into marketplace

uct has reputation for bugs

development runs out of time and money
developers rely on platform that turns out bad

doing design

small design upfront

Agilistas deride “Big Design Upfront” (BDUF)

what about Small Design Upfront?

> what isn't worth designing?

> can you recover from a bad design?
> what's the cost of design?

SDUF strategies

> precise but lightweight notations

> separate concerns & focus on risks
> avoid implementation bias

be like a beaver!

This image is in the public domain.

small nibbles, big outcome

intuitive vs data-driven design

#2200C1 #0044CC

Google Bing

Courtesy of Joshua Porter. Used with permission.

When a company is filled with engineers, it turns to engineering to
solve problems. Reduce each decision to a simple logic problem.
Remove all subjectivity and just look at the data. Data in your favor?
OK, launch it. Data shows negative effects? Back to the drawing board.
And that data eventually becomes a crutch for every decision,
paralyzing the company and preventing it from making any daring
design decisions. Doug Bowman

Spectrum of Design
Intuition-Driven Data-Driven
Make best-guesses Every design choice is tested
Rely on previous experience Takes others experience with a grain of salt
Study what others are doing Design is a logic problem
Use best practices, principles & patterns Rely on data for decision-making
Aesthetics are integral Aesthetics are secondary
Rely on our gut Never trust your gut
Creative, visionary Cold, calculating
Inherently risky Risk-averse
Doug’s words: Assumed:
instinctive, subjective, daring deliberate, objective, safe

Courtesy of Joshua Porter. Used with permission.

from Joshua Porter, bokardo.com

http:bokardo.com

radical design

a TDD guru on sudoku

Sudoku

My plan, subject as always to change, is to code something up in that way that I have, to see what
happens. Right now, I'm planning to implement a fairly naive strategy, and a tree-trimming one that I
think should solve all problems, albeit perhaps too slowly, and then leave it open to my readers to
propose new squares and new heuristic algorithms.

I'm re-ripping my entire CD collection, so I have to sit here anyway. Might as well code something.

The Game

I'm not going to talk much here about the game. There’s a square of cells, with side length of n-
squared, for order n = 1, 2, 3, 4, etc. You fill in the squares with the integers from 1 to n-squared,
subject to the rule that the same integer cannot appear more than once in the same row, same
column, or same n-size subsquare as the cell you're filling in. The game begins with some squares
“given”. Reportedly games come in a range of difficulty. Since I've never played the game, Idon’t
know what makes them more or less difficult. Maybe I'll find out.

Why is This Interesting?

Frankly, I don’t know, since I don’t play the game. I think that during this exercise we might hit some
interesting notions about solving computing problems we couldn’t solve by hand, and addressing
problems about which we know very little. If nothing else, it may be amusing watching me drown.

Begin With a Test

I'm going to do this in Ruby. My plan is to start with g by 9 squares, just because I can, in spite of the
fact that I can see already, having thought about it, how to use order to compute a bunch of the items.
I'll keep it specific just by way of tempting the YAGNI gods.

My Ruby style uses a project.rb file to map all the files in the app, and various .rb files to contain the
tests and classes. My base setup looks like this:

. from http://xprogramming.com/
project.rb | | |
require 'test/unit’ articles/oksudoku/

© Ron Jeffries. All rights reserved. This content is excluded from our Creative Commons license.

For more information, see http://ocw.mit.edu/fairuse.

12

http://ocw.mit.edu/fairuse
http://xprogramming.com/articles/oksudoku/
http://xprogramming.com/articles/oksudoku/

still going after five long blog posts...

Sudoku 5: Objects Begin to Emerge

The code is beginning to ask for some help. We're processing a simple array of cells instead of an
object, and the classes don’t feel cohesive. Let’s push some methods off to new classes and see
what happens.

© Ron Jeffries. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

Peter Norvig solves in one:

Solving Every Sudoku Puzzle

by Peter Norvig

In this essay I tackle the problem of solving every Sudoku puzzle. It turns out to be quite easy (about one page of code for the main
idea and two pages for embellishments) using two ideas: constraint propagation and search.

© Peter Norvig. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

see http://norvig.com/sudoku.html

13

http://ocw.mit.edu/fairuse
http://ocw.mit.edu/fairuse
http://norvig.com/sudoku.html

lessons?

risk
> Ron Jeffries focuses on class design
> but real risk is algorithmic?

Norvig's advantage
> he knows Al: applies standard solution

Walter Vincenti's dichotomy
> normal design: tweaking parameters
> radical design: never done this before

14

co-evolution

co-evolution

problem space

VAAN

solution space

UML

Image of UML diagrams removed due to copyright restrictions.
Reference: Illustration by Kishorekumar 62 on Wikimedia Commons.

17

http://commons.wikimedia.org/wiki/File:UML_Diagrams.jpg

co-evolution in UML

co-evolution in UML

heavy documentation
complex notations
tool support deferred

the cost of complex tools

inition

Pages in Def

800 [~
750 [~
700 |-
650 |-
600 [~
550 |-
500 [

450 -

400
350 |
300 |-
250 |-
200 |-
150
100 ~
o L ' >
\9/9 @fb\’ © QO)Q q")’\’ qq’b q"’b‘ qo)u q"’b o)qq

) 2

NN NN

(\)» 'b\' \/\'
R Q\
N

Image by MIT OpenCourseWare.

agile

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come fo value:

Individuals and interactions over processes and tools
WOI'kiIlg software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is. while there i1s value in the items on
the right, we value the items on the left more.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
Ward Cunningham Jon Kern Dave Thomas
Martin Fowler Brian Marick

© the above authors. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

21

http://ocw.mit.edu/fairuse

co-evolution in agile

baby out with bathwater
today’s orthodoxy?

o

unused

descartes’s four rules

The first was never to accept anything for true which I did not clearly know to be such; that is to say,
carefully to avoid precipitancy and prejudice, and to comprise nothing more in my judgment than what
was presented to my mind so clearly and distinctly as to exclude all ground of doubt.

The second, to divide each of the difficulties under examination into as many parts as possible, and as
might be necessary for its adequate solution.

The third, to conduct my thoughts in such order that, by commencing with objects the simplest and
easiest to know, | might ascend by little and little, and, as it were, step by step, to the knowledge of the
more complex; assigning in thought a certain order even to those objects which in their own nature do
not stand in a relation of antecedence and sequence.

And the last, in every case to make enumerations so complete, and reviews so general, that | might be
assured that nothing was omitted.

25

leibniz on descartes's second rule

“This rule of Descartes is of litt

e use as long as the art of dividing

remains unexplained... By dividing his problem into unsuitable parts,

the inexperienced problem-so

ver may increase his difficulty.”

Leibniz, Philosophical Writings, ed. C.I. Gerhardt; Vol. 4, p.331, 1857-1890

26

norvig on sudoku

Screenshot of Peter Norvig's webpage removed due to copyright restrictions.

27

http://norvig.com/sudoku.html

MIT OpenCourseWare
http://ocw.mit.edu

6.170 Software Studio
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

