
softwarestudio 
software development processes
 

Daniel Jackson
 

1

1



 

 

One of the planning documents for software research revealed --in a 
parenthetical remark only-- an unchallenged tacit assumption by 
referring to "the tradeoff between cost and quality". Now in all sorts of 
mechnical engineering it may make sense to talk about "the tradeoff 
between cost and quality", in software development this is absolute 
nonsense, because poor quality is the major contributor to the soaring 
costs of software development. 
—Dijkstra, EWD690 

© E.W. Dijkstra. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

2

http://ocw.mit.edu/fairuse


Quotation from Fred Brook's The Mythical Man Month, 1975 removed due to copyright restrictions.

3



the waterfall model, 1970
 

from: Winston Royce, “Managing the Development of Large Software Systems”,
Proceedings of IEEE WESCON 26 (August): 1–9, 1970. 

4

Image by MIT OpenCourseWare.

Ideal waterfall model.

System
Requirements

Software
Requirements

Analysis

Program
Design

Coding

Operations

Testing



what Royce actually said
 

5

Waterfall model with iterative interactions restricted to successive steps.

System
Requirements

Software
Requirements

Analysis

Program
Design

Coding

Operations

Testing

Image by MIT OpenCourseWare.



what happens in practice
 

6

Waterfall model in practice, iterations are not restricted to successive steps.

System
Requirements

Software
Requirements

Analysis

Program
Design

Coding

Operations

Testing

Image by MIT OpenCourseWare.



Royce’s fixes 

program design comes first 
›	 do some design between requirements and analysis phases 

document the design 
›	 how much? “my own view is quite a lot” 

do it twice 
›	 “If the computer program in question is being developed for the 

first time, arrange matters so that the version finally delivered to the 
customer for operational deployment is actually the second version 
insofar as critical design/operations areas are concerned” 

plan, control and monitor testing 
›	 with a separate testing team 

involve the customer 
›	 “in a formal way, committed... at earlier points before final delivery”
 

7



 

spiral model, 1986
 

Diagram of the spiral model removed due to copyright restrictions.

Reference: Figure 1 from Boehm B. “A Spiral Model of Software Development and Enhancement."
$&0�6,*62)7�6RIWZDUH�(QJLQHHULQJ�1RWHV 11, no. 4 (1986): 14-24.

8

http://dl.acm.org/citation.cfm?doid=12944.12948


origins of iterative approaches
 

This image is in the public domain under the Open Government License v1.0.

plan-do-study-act 
› Shewart, 1930s
 
› Deming, 1940s
 

Project Mercury 
› NASA, 1960s 
› half-day iterations 
› tests before each iter 
› became IBM Federal 

Systems Division
 

See: Craig Larman, Victor R. Basili (June 2003). "Iterative and Incremental Development: A Brief History". IEEE 
Computer(IEEE Computer Society) 36 (6): 47–56. 

9

http://www.nationalarchives.gov.uk/doc/open-government-licence/version/1/open-government-licence.htm


V model
 

This image is in the public domain.

tests developed in early phases, applied in later phases
 
10



extreme programming
 

Kent Beck, 1999 
› take best practices to “extreme” levels 
› developed during C3 project with Ron Jeffries 

a sample of XP practices 
› test first: acceptance and unit tests 
› continuous integration 
› pair programming 
› repeated refactoring 

Chrysler’s C3 payroll system 
› started in 1996, cancelled in 2000 
› implemented in Smalltalk 
› running payroll took 1000 hours initially 
› Chrysler said they abandoned XP after this 

11



© the above authors. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse. 12

http://ocw.mit.edu/fairuse


agile approaches 

agile manifesto (2001) 
› an articulation of common practices 
› a reaction to traditional notions 

rejected notions 
› upfront design (“BDUF”)
 
› written documentation (“ceremonial”)
 
› planning for future modifications
 

key practices like XP 
› continuous integration, test first, refactoring 
› features added incrementally (“sprints” and “scrums”) 

13



MIT OpenCourseWare
http://ocw.mit.edu

6.170 Software Studio
Spring 2013 
 

 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



