software .
SWaC

design review: shopping cart

Daniel Jackson

puzzle

MIT tuition
> $20,885/term = $5221/course = $500/week

question you might ask
> what do | get for my money and effort?
> isn't this stuff | could learn by myself? or at a company?

question we ask
> what can we teach you that you can't learn elsewhere?

our answers

big ideas: what's below the surface

reflection: learning to design consciously (SOC, articulation)
sensibilities: simplicity & clarity

abstractions: rep-independent data model

v

v

v

v

reflective design questions

why?
> why am | doing this?
> what am | trying to achieve?

what?
> what am | trying to build?
> who or what will it interact with?

how?
> what state will | need to record?
> what will the key concepts be?

but..?
> what challenges arise?
> how might it fail or be broken?

context diagrams

context diagrams

Buyer

45

Seller

List Catalog items

sells things
through

>

Shopping
Cart App

Shopping Cart
F
Catalog &
Edit Catalog Items

doesn't identify system

shops on

buys things
from

vague actions & flows

Diagrams © various MIT students. All rights reserved.

This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/

Buyer

good

http://ocw.mit.edu/help/faq-fair-use/

send purchased

Shoppers € Tems Shopkeepers
I get available upload I
«Items | L inventory
Browser Snopping Browser
» Cart Site
purchase send
items purchases

nice, but why browsers?

Diagram © various MIT students. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/

http://ocw.mit.edu/help/faq-fair-use/

thinking about context: yes!

i create/update
catalog and view
orders
4
cash flow
goods ShopKart
Y
Update cart and
make purchases
User (shopper)
Regsters/Places Orders
Sho p ping isters/Croales Catalogs
Site
Browse Catalogs
. 3
Reguest payment " ' Ghvess

L

Sends
payments

Delvers product fom

Fulimens /

Center

offers ferrs,
descriptons,
peces

Ships products

Forwards
payments

Shopper >4

pays the seler | Paymem
Buyer " Processor Seller
1
requests $
‘ ! TERRy Sends Ordered items
_ Delwers the order | Shipping L N
_ Company |

Diagrams © various MIT students. All rights reserved.

This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/

Buys
products

Shopping
Application

(_stoseeerer)
Shopkeeper
\ pxeepe

Sells
products

http://ocw.mit.edu/help/faq-fair-use/

summary

what is context diagram?
> defines boundaries of system
> who/what does it talk to?

what you're trying to do
> identify external interfaces, gross dataflows

common mistakes

> splitting system into multiple boxes

> using arrow for direction of action, not dataflow

> missing important features (eg, maintaining catalog)
> mMissing important actions (eg, viewing items)

concepts

concepts: don't repeat yourself

Key Concepts:

Item: An item for sale.
relations: has_many cart_items, has_many order_item, has_many carts through cart_items,

has_many orders through order_items DRY: code details
attributes: price, name, shop_id

AZCart models the following concepts:

* User: Represents a user on the site, could be either a Shopper or a DRY: OM details
Shopkeeper ’

» Catalog: Represents a catalog of items. Each Shopkeeper owns a Catalog
and can add/remove/edit items in the Catalog.

* Cart: Represents a cart of items. Each Shopper owns a Cart and can
add/remove/edit quantities of items in the cart.

* Order: Once the Shopper hits “Checkout,” an Order is made from the Cart,
which is available for the shopkeeper to approve or deny.

* Item: Represents an individual item in the Catalog. Each item can also
belong to multiple Carts and Orders.

Key Concepts

Shopkeepers are able to use the site to portray the goods and services they offer and other details

such as price and inventory. Customers in turn can aggregate items they wish to purchase and

once they have selected everything they wish to purchase, they can complete one transaction to DRY- featu res
purchase these items. *

Text excerpt © various MIT students. All rights reserved.

This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/ 10

http://ocw.mit.edu/help/faq-fair-use/

concepts

Key concepts

The key concepts in ShopKart are carts, catalogs, and products. A catalog consists of all the products
the merchant chooses to make available for people to buy, and a user places products in his cart for
purchase. The notion of a cart also provides a method to view past orders: when a cart is purchased, its
internal attributes are frozen, and it is now considered a past order.

nice, but explain products

Text excerpt © various MIT students. All rights reserved.

This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/ H

http://ocw.mit.edu/help/faq-fair-use/

concepts

The key concepts in the design of ShoppingCart are users, carts, line_items, and items.

e User: Can be a signed-in (recognized) or not signed-in (unrecognized) visitor to the site. A user
has only one active cart at a time. A user can also be a seller, and modify the catalog.

e (Cart: Acartis a collection of line_items. An active cart is what can be modified by the user, while
an inactive cart is an order: a historical view at what customers have ordered. A cart belongs to a
single users, who in turn can only have one active cart at a time.

e Line_item: Aline_item is an item in a cart,and has the same attributes as items plus a quantity. It
gets deleted when the product is represents gets deleted.

e |tem: Anitem is an item for sale. It has a certain price, name, and description.

nice, but reduce overlap with OM; also explain item

Text excerpt © various MIT students. All rights reserved.

This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/ 2

http://ocw.mit.edu/help/faq-fair-use/

summary

what are concepts?
> key ideas that characterize the design

what you're trying to do

>

>

separate the obvious from the non-obvious
define novel or confusing concepts precisely

common mistakes

>

>

>

repetition: overlap with features and OM

not focusing on novelties (eg, cart vs order)

missing key issues (eg, one of a kind item vs descriptor)
watering down with minor details

circular definitions (item is an item)

features

hice categorization

Text excerpt © various MIT students. All rights reserved. 15
This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/

http://ocw.mit.edu/help/faq-fair-use/

Text excerpt © various MIT students. All rights reserved.

nice division into roles
3.1. Feature descriptions

myShop will simulate the real life shopping experience by providing to the shopper
and seller the virtual analogs of what they would use and see in real life.
In particular, for the shopper, ability to:

* window shop: shoppers can view items sold in a seller’s shop.

* maintain a cart: shopper can add and remove items from seller’s shop to a
cart. No shopper registration is required.

* place an order: shopper can purchase the contents of their cart.
None of these actions will require shipper registration.

And for the seller, ability to:

* own shop: seller can create and maintain more than one shop, each with
their own set of items.

* maintain shop/inventory: seller can add and remove items from shops.

* maintain items: seller can change the price and number of a certain type of
item.

* maintain orders: seller can view orders across his shops and mark as closed
when they are fulfilled.

16

This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/

http://ocw.mit.edu/help/faq-fair-use/

summary

what are features?

> areas of functionality

> actions that go together
> for some larger purpose

what you're trying to do

> provide a high level outline

> identify groupings of lower-level functions
> tie back to the user’s purpose

common mistakes
> just listing actions and not grouping into features
> no organization, eg by role or end-goal

object model

not an OM: edges should represent state, not actions

Diagram © various MIT students. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/

19

http://ocw.mit.edu/help/faq-fair-use/

User

Shoppet Shopkeoper
A 2 N\ ! NG
g \)
) approvesy’ :
owns) e
/ owns | ¢
|’ /"" ‘\‘\ [
- ’/. -
SH000! 540TS a1
Oroe Catuicg

Cant

o

-

-

o // '
-~
nas many
has many
. A
N

:"/ 2 '/ "l!r
Shopper
User pq—
Shopkeeper

not OMs: edges should represent state, not actions

modifies & interacts

Diagrams © various MIT students. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/

Item

g
] Buyer o
L -) View, Edit |
!
Buyer
v"’ o ‘1 l {
. Transaction | > |
\) Items .
]/
Catalog
Cart ‘ references /
stores 1D
places
CartitemJoin
J stores
Quantity

references /
stores 1D

Add, Edit,
Remove

20

http://ocw.mit.edu/help/faq-fair-use/

nice, but: shared properties of users?
customer has exactly one cart

Diagram © various MIT students. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/

21

http://ocw.mit.edu/help/faq-fair-use/

what is places?

Diagram © various MIT students. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/

22

http://ocw.mit.edu/help/faq-fair-use/

has many edges with same label

merchant has many orders: placed? fulfilled?

Diagram © various MIT students. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/

http://ocw.mit.edu/help/faq-fair-use/

i]! has i 1! has . [
shopper » cart » items
\) ; J \
! -
" 11 has
manage shop
- J
! '
shopkeeper
has
v »
has . [B
. » orders
\ o

has not specific enough

Diagram © various MIT students. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/

24

http://ocw.mit.edu/help/faq-fair-use/

Session

?
: has
User ! has * Orders ¢. has B
A A
Shopper Store Carts Placed
Administrator
! adds

more unspecified has relationships

Diagram © various MIT students. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/

Items

25

http://ocw.mit.edu/help/faq-fair-use/

good attempt

!
Catalog can edi Shopkeeper
. ! all !
items !
orders
ordered a Time
shipping type Shipping
I Method
Item Order
carn shipping addr
! !
info
Order Info billing addr Address
. prev
nems
| orders |
z ?
? ! payment info
current cart info Payment
Can User Method

what's User.info? can_edit?

Diagram © various MIT students. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/

http://ocw.mit.edu/help/faq-fair-use/

user-cart? items and ordered items disjoint?

Diagram © various MIT students. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/

27

http://ocw.mit.edu/help/faq-fair-use/

why is order needed if 1-1 with cart?

Diagrams © various MIT students. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/

28

http://ocw.mit.edu/help/faq-fair-use/

what's user-store relation?

Diagram © various MIT students. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/

http://ocw.mit.edu/help/faq-fair-use/

ltem
1 makes/edits

Shopkeeper

Behavior

Lineltem

«—— (Cart
contains
I Tcart
Customer

Orderedltem ¢_contains

l makes

Orders

why two kinds of item? why no generalization of cart/order?

Diagram © various MIT students. All rights reserved.

This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/

30

http://ocw.mit.edu/help/faq-fair-use/

Ordered Cart

+
> ltem « Cart
items
creates, 4
updates
Shopping Cart
T
User
4 shopping
| cart
7 i
=1 Shopkeeper Customer

t +

ordered
cart

good, except for creates/updates; should be “offered”?

Diagram © various MIT students. All rights reserved.

This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/

31

http://ocw.mit.edu/help/faq-fair-use/

summary

what is the object model?
> abstract representation of state

what you're trying to do
> capture what the system must store
> but avoid implementation details

common mistakes

> confusing state and action

> using "has” labels, making actual relation unclear
> omitting state (eg, order placed vs order fulfilled)

a rule of thumb

> beware of active verbs as edge labels (adds, removes)
> stative verbs are ok (offers, likes, posts)

> past participles are ok (posted, added, selected)

32

security concerns

Security requirements:

1.
2.

3.

Text excerpt © various MIT students. All rights reserved.

Non-seller cannot edit/create products, and cannot access order listing
Cookies should be cleared after exiting window to minimize ‘sharing’ sessions between

one customer to another

Seller can only access order listing using a username and a password

If the seller forgets to log out, the site should automatically log the seller out, so that the
next user at the computer will not have access to orders list

Only admin user can create more users

mixes security requirements and particular threats

34

This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/

http://ocw.mit.edu/help/faq-fair-use/

BlackMarket has the following security requirements: it must ensure a reason-
able level of protection for its users’ usernames, passwords, and private informa-
tion such as purchase habits. BlackMarket may be vulnerable to the following
potential security threats:

e A hacker can mass create usernames and passwords. I can mitigate this
by implementing a human verification method such as math captcha. I
can also require user to verify the account creation through email.

e A hacker can create an account and generate mass orders or advertise
multiple fake products. This will flood the app’s database and also affect
other users’ experience. I will need some methods to put a cap on the
number of orders placed and allow users to report spam.

e The fact that cookies are used to track user’s log-in state and shopping cart
makes the system vulnerable to packet sniffing whereby someone intercepts
traffic between a computer and the Internet. Once the value of a user log-
in cookie is stolen, it can be used to simulate the same session elsewhere
by manually setting the cookie - session hijacking.

e Since the app requires users to interact directly to complete transactions, I
will also need to implement identity verification methods and advise users
not to meet with their counter-parties if suspect. LK xcerpt © verious MIT students.

All rights reserved. This content is
excluded from our Creative Commons license.

very good enumeration of risks rormore inormation, see

http://ocw.mit.edu/help/fag-fair-use/

http://ocw.mit.edu/help/faq-fair-use/

security concerns: example

summary of key security requirements

>

>

>

>

>

>

>

>

no tampering with merchant catalog (eg, prices, stock)
no bogus orders (for existent or non-existent shoppers)
no stealing of personal data (past orders, address, etc)
no stealing of credit card numbers

no viewing of competitors’ orders by merchants

no viewing of shoppers’ orders

no illegal sales (pharma, illicit drugs, porn)

no denial of service attacks

how standard attacks are mitigated
> XSS: sanitization; CSRF: form tokens; cookies: encrypt, expire

threat model: assumptions about attackers
> attackers have physical access to clients but not servers (so expire)
> attackers may snoop (so use SSL for purchases)

36

security strategies

to prevent bad access
> authentication + access control on all sensitive actions
> expiring cookies and deleting on logout

to protect financial data
> SSL encryption for financial data submission
> no storage of credit card numbers

to lower risk of illicit merchants

> charge merchant fees

> provide user reporting of abuse
> vigilant moderator team

summary

what you're trying to do

> identify the key security risks

> think about strategies to address them

> understand what makes this problem special

common mistakes

> ignoring domain-specific security requirements
> not describing the problem, just the solution

> mixing the problem and the solution

why this matters

> need a clear sense of what the major risks are

> ... what options the designer has to address them
> ... what risks will remain

38

design challenges

actually not relevant to this

what happens on login?

: : , sharing between sessions?
nice problem/solution separation

Text excerpt ©Parious MIT students. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see _http://ocw.mit.edu/help/fag-fair-use/

40

http://ocw.mit.edu/help/faq-fair-use/

4.7 Adding an item to a user’s cart when it already exists
in another user’s cart

Challenge: When a user adds an item that is present in another user’s cart,
should the user be allowed to add the item to the cart, and thereby should the
item be allowed to exist in multiple carts?

Options:
1. Allow item to exist in multiple carts.
2. Don’t allow item to exist in multiple carts.

Solution: Given competitive nature of the market provided by Flexion, this
problem may be prevalent given that a large number of users are subscribed
to Flexion. The solution decided upon was to allow items to exist in multiple

carts. When a user proceeds to check out and buys the item, the item is tagged
accordingly (discussed in 4.1). This allows Flexion to maximize its opportunity
to make a transaction occur; it exacts pressure on users to check out which can
potentially lead to higher number of transactions; lastly, it is fair in its protocol
as it promotes a first come first serve approach.

generally good, but could be clearer
about what the problems are and what
the solutions involve

Text excerpt © various MIT students. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/

http://ocw.mit.edu/help/faq-fair-use/

Design of carts: The user wants to be able to add items to cart(s) across the
different stores.

1. Maintain different carts: Each store will have a different cart associated
with it, so users have to navigate to different stores within our site to access
the relevant carts

2. Maintain only one cart: Users can add items to a cart from any store.

We picked option 2 since we wanted to provide a user experience like that of
Amazon, where the notion of multiple sellers is abstracted away from the notion of a
cart. It's easier and more intuitive for the user to just add items to their cart instead
of remembering which items where in which carts.

nicely explained, but what about orders?

Shoply has the following key concepts:
User - a user can either be a buyer or a seller and has certain properties like
name, password, etc.
* Store: a listing of products, along with store name, description etc
* (Cart - a list of cartitems a buyer has added to his cart
* (Cartltem - contains an item a user has added to the cart along with the

quantity
* Jtem - contains item information like name, price, description, etc.

* Order - contains a list of snapshots of items, as well as the user who placed

the order
* Orderltem - a snapshot of all the items in an order along with the quantity
foreae. all items in order from one store?

Text excerpt © various MIT students. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/

http://ocw.mit.edu/help/faq-fair-use/

Can a shopper be a shopkeeper and a shopkeeper be a shopper?

One way to manage users is to have a group of users who choose to be shopkeepers when they
registered their accounts. The rest of the users choose to be shoppers. Another way is to

allow a user to be both. I choose the second way because although there is a clear boundary
on user’s types on the server side for the first way, web users may not be happy with it. For
example, for the first approach, what will happen if a shopkeeper wants to shop? Does he
have to register for a new account, with a different e-mail? To get rid of these questions, I
decide to make a registered user do whatever they want.

good observations! how will you achieve this?
some functions only appear if you're a merchant?

Text excerpt © various MIT students. All rights reserved.

This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/ “

http://ocw.mit.edu/help/faq-fair-use/

How to keep past orders?

There are several ways to store past orders in the database because an order can be specified
by shopper’s id, shopkeeper’s id, item’ id etc. One approach is to store everything by its id.
Storing a user’s id with an order (making an order belongs_to a user) simplifies the method
for displaying past orders for a user (either a shopper or a shopkeeper). Storing an item id
makes it easier to query all orders on this particular item. These can be automatically done
easily by using has_many and belongs_to in rails.

Another approach is to store everything as its value, i.e., store shopper’s e-mail, shopkeeper’s
e-mail, item name, catalog name, price at the current point, quantity, etc. This approach
makes sure the recent orders that a user view stay the same even if a shopkeeper edit an
item name or item price. The data stored in the table is the information that a user, as a
shopper or a shopkeeper, cares about. This also means that in the object model, order does
not belong to any other object.

good, but explain the whole problem first

Text excerpt © various MIT students. All rights reserved.

This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/ “

http://ocw.mit.edu/help/faq-fair-use/

Guest User

cart
cart
administers
purchase saved items
items/items
| ' purchased
Cart Order Saved Iltems Catalog
. !
items
items available items
items
ltem

OM for last example:
items: Order -> Item ?2?

Diagram © various MIT students. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/

http://ocw.mit.edu/help/faq-fair-use/

1. Access control mechanism

There is a subtle trade off between a simple user interface and providing strong
security mechanisms to mitigate some of the concerns raised in Section 3.

(a) Password protection: Only allow the user to add items to cart or to the
inventory after the user has either created or entered a password.

(b) Sessions with authentication later: Allow the user to add items to cart
or to the inventory, but require authentication before checkout or additing a
new item to the inventory.

I chose option 2 in part because it was enforced on us during tutorial and lecture.
Apart from this, there are some other reasons why option 2 might be preferred.
Option 2 makes SimpleCart lightweight. When the user arrives at the homepage,
the user can directly start selecting items to add to the cart. This also makes
SimpleCart’s user interface simple. Since authentication is performed before the
items in the cart can be checked out or before new items can be added to the
inventory, security is not compromised.

Text excerpt © various MIT students.
All rights reserved. This content is

o e nfomaton see - "* many good points made here

http://ocw.mit.edu/help/faqg-fair-use/

be careful about terms: password, authentication

is cart also persisted? if so, does login do merge? ;

http://ocw.mit.edu/help/faq-fair-use/

4. Resolving concurrency between two purchases of the same item

Another design challenge faced was to make a decision on how to handle the
concurrency case when two users placed the same item in the cart and tried to

checkout simultaneously. SimpleCart could do the following:
(a) Allow only the first user to purchase the item.

(b) Place the item on hold and notify the seller to make the decision, possibly
through a bidding process.

In order to keep SimpleCart simple, option 1 was chosen. When a user purchases
a particular item, that item is removed from catalog of all items as well as from
the inventory of the seller. Therefore, in its current design each item can only be
bought by one user. Hence, the user who first makes a succesful payment for the
item gets the item, and the second user receives an error message saying that he or
she cannot purchase the item. SimpleCart’s current design can be easily extended
to handle the notion of quantity of each item by maintain a quantity field in the
item model.

excellent!

Text excerpt © various MIT students. All rights reserved.

This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/ 4

http://ocw.mit.edu/help/faq-fair-use/

Text excerpt © various MIT students.

All rights reserved. This content is

excluded from our Creative Commons license.
For more information, see
http://ocw.mit.edu/help/fag-fair-use/

thoughtful analysis; note clear admission of limitation

48

http://ocw.mit.edu/help/faq-fair-use/

Transaction mechanism: we can allow users to make payment throught two
methods:

e Credit card payment

e Settle in person

Credit card payment will solve many problems such as mass fake orders because
payment is required before orders can be sent to sellers, However, it requires

much more rigorous measures for validation, security, and routing with bank
accounts. For the scale of this project, I opt for the second option and allow
users to settle payment by themselves. BlackMarket will simply notify sellers of
new orders and include the buyers’ contacts rather than other shipping addresses
in the order. Note that buyers can only include their provided email addresses
as their payment contacts so as to avoid scams.

Another concern is the possibility of price or quantity changes when an order is
in a shopping cart. I will fix this by asking the server to check before actually
sending the order.

good discussion, but second issue is really different

Text excerpt © various MIT students. All rights reserved.

This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/ o

http://ocw.mit.edu/help/faq-fair-use/

summary

what you're trying to do
> identify the key design issues before coding
> explore alternatives & justify your choices

common mistakes

> not explaining the problem

> not structuring clearly (problem, options, choice)

> not following through (eg, what happens when item disappears?)
> vague description of problem (“how to represent X")

a general issue
> too much focus on code issues, not enough on behavior design

sample behavioral design problems

can shopper add items without logging in?
> if so, what happens when they login?
> what if they do this in multiple browsers at once?

multiple merchants
> can cart mix items from different merchants?
> what happens to order in this case?

is inventory limited?
> contention between shoppers?

handling failures
> what if merchant can't provide item? undoing orders?

merchant-shopper contention?
> change or price, item description?
> during shopping, after order, after fulfillment?

MIT OpenCourseWare
http://ocw.mit.edu

6.170 Software Studio
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

