software .
SWANC

data models in Rails

Daniel Jackson

schema management

schema
> like a type decl for a database
> |ists tables and columns

writing a schema in SQL
> schema is created using CREATE TABLE operations

what if schema changes after deployment?
> make a new schema

> lose all data in database

> reimport data

migrations

idea

class CreateProducts ActiveRecord
def up
create table :products d |t
t.string :name
t.text :description
t.timestamps
end
end

def down
drop_table :products
end
end

> programmer doesn’t write schema
> instead, writes incremental changes

migration

> an incremental change to the schema
> just a Ruby class with code to modify the schema
> methods to make (up) and rollback (down) change

: :Migration

editing schemas

$ rails generate model Product name:string description:text

to create a table

> make a migration class (by hand, or with generator as above)
> run rake db:migrate

to change a table

> run rake db:rollback
> edit the migration

> run rake db:migrate

or

> create a migration for the edit
> run rake db:migrate

object relational mapping

class Product

name: “787"

description: ““new ...batteries”
id name description
1 “787" “new dreamliner with excitable batteries”
2 “T47"7 “long haul aircraft for 400 passengers”

table products

model declarations

class Product ActiveRecord: :Base

. end
class declaration

> created with migration by rails generate model
> need not mention columns

mass assighment
> a security vulnerability
> mark assignable columns with attr_accessible

http://www.example.com/user/signup?user[name |=ow3ned&user[admin]=1
params| :user] # => {:name => “ow3ned”, :admin => true}

def signup
@user = User new(params|[:user])
end

class User ActiveRecord: :Base
attr accessible :name
end

using models

Create a new product object
p = Product.new(:name => "787", :description => "dreamliner")

Modify a product object
p.description = "bad dream liner”

Save object as tuple in database table
p.save

Find the product with primary key (id) 3
p = Product.find(3)

aSSOCIatIonS can now write: customer.orders

class Customer class Order
name: “Alice” date: Feb 19, 2013
orders: « customer:
array
[0]:

id name id date customer id
1 “Alice” 1 Feb 20, 2013 1

2 “Bob” 2 Feb 19, 2013 1

table customers table orders

declaring associations

class Order ActiveRecord: :Base
belongs to :customer
end

class Customer < ActiveRecord: :Base
has _many :orders # note pluralization!
end

class CreateOrders < ActiveRecord::Migration
def up
create_table :orders do |t]
t.references :customer
end
end
def down
drop _table :orders
end
end

association types

has_many + belongs_to
> many-to-one relationship
> foreign key goes in table for class with belongs_to dec|

has_one + belongs_to
> one-to-one relationship
> foreign key goes in table for class with belongs_to decl

has_and_belongs_to_many x 2
> many-to-many relationship
> need an extra ‘association’ table

Rails guide
> provides examples (but sadly lacks details and clarity)

MIT OpenCourseWare
http://ocw.mit.edu

6.170 Software Studio
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

