software .
SElEI®:

modularity & dependences

Daniel Jackson

what makes a system “modular”?

in traditional engineering
> components can be built, tested & replaced independently

in software engineering

> components can also be reasoned about independently
> changes to components are “localized” or “contained”

containing failures?
> may not follow from modularity
> maybe the opposite (since modularity encourages sharing)

“The current configuration of electronics on the
Dreamliner puts passenger electronic entertainment on
the same computer network as the flight control system.”

http://www.wired.com/politics/security/news/2008/01/dreamliner_security

http://www.wired.com/politics/security/news/2008/01/dreamliner_security

when does modularity fail?

client-service binding
> when service changes, client must too
> eg: old apps fail on new release of OS

abstraction violation
> service doesn't change, but client must anyway
> eg: representation of datatype is leaked

module-problem binding
> one piece of the problem in two modules
> eg: document is paragraph-structured, in Word

Parnas’s uses relation

Client

uses

Service

example: a browser

Main

N

Renderer Parser Protocol

/NN

Page Network

minimal subsets

a common problem
> suppose you want module M
> what other modules do you need?

solution
> you need all the modules M uses
> and the ones they use...

examples
> minimal subset for Renderer? for Parser?

other uses of uses

you change module M
> which modules might break?

you want to test M
> which modules must be complete?

you want to reason about M
> which module’s specs do you need?

software subtlety

X may use Y without knowing about it
> eg, because Y is configured dynamically
> X only knows interface of Y

example: observer pattern
> interface | interposed between subject S and observer O
> now S depends on |, but noton O

Subject Interface

Observer

layering: a common pattern

Diagram of Android's multi-layered operating system architecture (in "The Embedded Beat")
removed due to copyright restrictions.

AndrOid arChltECtU '€ from https://community.freescale.com/community/the-

embedded-beat/blog/2010/05/24/android-makes-the-move-to-power-architecture-technology

https://community.freescale.com/community/the-embedded-beat/blog/2010/05/24/android-makes-the-move-to-power-architecture-technology
https://community.freescale.com/community/the-embedded-beat/blog/2010/05/24/android-makes-the-move-to-power-architecture-technology

back edges

Main

/

Renderer

Parser

Protocol

N VAR

/

Page

Network

10

design structure matrix

Matrix of classes of Spring framework (in "Dependency Structure Matrix")
removed due to copyright restrictions.

11

http://erik.doernenburg.com/2010/04/dependency-structure-matrix

highlighting back edges

2] ineae | 172 Beranas

P I) haln | 1T Rleaee

$root ANNARERARSSSHR
—HEALE cvslib 1
g § mr.rpilers 2 s
w |5t |2 rmic 3 ©
E 2 # condition 4 7 ARR
= |@ = email 5V 3
gl [6 |0 e o
= =N loader 7:
Y+ listener 8
~ [+ helper 9 ‘ ,
i ;
C+filters 11 > . n‘_ao]
[+ util 12913 (s v 284 2 0] |=
13Y|s |=7|e7 |4 |8 o o8
- 14V |es |7 | oo |75 1 |60 178
+ UTILITIES 15 “ |12 0

Courtesy of Lattix, Inc. Used with permission.

from: http://www.lattix.com/products/modules/java

12

http://www.lattix.com/products/modules/java

how to avoid modularity failures

client-service binding
> control dependences, especially back edges

abstraction violation
> make sure clients only rely on specs
> use language abstraction constructs

module-problem binding
> encapsulate design decisions
> this is “information hiding”

DRY

a rule of thumb
> “Don't Repeat Yourself”

can you explain this rule?

> how does it relate to uses? information hiding?
> what are its limitations?

MIT OpenCourseWare
http://ocw.mit.edu

6.170 Software Studio
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

