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8.1 Introduction 
In this lecture, we turn to our second tool for understanding abstract data types: the 
abstraction function. The rep invariant describes whether an instance of a type is well 
formed; the abstraction function tells us how to interpret it. It’s impossible to code an 
abstract type or modify it without understanding the abstraction function at least 
informally. Writing it down is useful, especially for maintainers, and crucial in tricky 
cases. 

8.2 Abstract and Concrete Objects 
In thinking about an abstract type, it helps to imagine objects in two distinct realms. In 
the concrete realm, we have the actual objects of the implementation. In the abstract 
realm, we have mathematical objects that correspond to the way the specification of the 
abstract type describes its values. 

Suppose we’re building a program for handling registration of courses at a university. 
For a given course, we need to indicate which of the four terms Fall, Winter, Spring
and Summer the course is offered in. In good MIT style, we’ll call these F, W, S and U. 
What we need is a type SeasonSet whose values are sets of seasons; we’ll assume we 
already have a type Season. This will allow us to write code like this: 

if (course.seasons.contains (Season.S)) ... 
There are many ways to represent our type. We could be lazy and use 
java.util.ArrayList; this will allow us to write most of our methods as simple 
wrappers. The abstract and concrete realms might look like this: 
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The oval below labelled [F,W,S] denotes a concrete object containing the array list 
whose first element is F, second is W, and third is S. The oval above labelled {F,W,S} 
denotes an abstract set containing three elements F, W and S. Note that there may be 
multiple representations of the same abstract set: {F, W, S}, for example, can also be 
represented by [W,F,S], the order being immaterial, or by [W,W,F,S] if the rep 
invariant allows duplicates. (Of course there are many abstract sets and concrete 
objects that we have not shown; the diagram just gives a sample.) 

The relationship between the two realms is a function, since each concrete object is 
interpreted as at most one abstract value. The function may be partial, since some 
concrete objects -- namely those that violate the rep invariant -- have no interpretation. 
This function is the abstraction function, and is denoted by the arrows marked A in the 
diagram. 

Suppose our SeasonSet class has a field eltlist holding the ArrayList. Then we 
can write the abstraction function like this: 

A(s) = {s.eltlist.elts [i] | 0 <= i <= size(s.eltlist)} 
That is, the set consists of all the elements of the list. 

Different representations have different abstraction functions. Another way to represent 
our SeasonSet is using an array of 4 booleans. Here the abstraction function may, for 
example, map 

[true, false, true, false] 
to {F,S}, assuming the order F, W, S, U for the elements of the array. This order is the 
information conveyed by the abstraction function, which might be written, assuming the 
array is stored in a field boolarr as 

A(s) =
(if s.boolarr[0] then {F} else {}) U 
(if s.boolarr[1] then {W} else {}) U 
(if s.boolarr[2] then {S} else {}) U 
(if s.boolarr[3] then {U} else {}) 
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We could equally well have chosen a different abstraction function, that orders the 
seasons differently: 

A(s) =

(if s.boolarr[0] then {S} else {}) U 

(if s.boolarr[1] then {U} else {}) U

(if s.boolarr[2] then {F} else {}) U

(if s.boolarr[3] then {W} else {}) 


An important lesson from this last example is that ‘choosing a representation’ means 
more than naming some fields and selecting their types. The very same array of 
booleans can be interpreted in different ways; the abstraction function tells us which. 
Likewise, in our linked list example in Lecture 7, the abstraction function tells us how the 
order of entries corresponds to the order of elements. It is a common error of novices to 
imagine that the abstraction function is obvious, since you can always guess what it is 
from the declarations in the code. Unfortunately, this is often not true: it takes careful 
reading of the linked list code to discover that the first entry is a dummy entry, for 
example. 

8.3 A Nifty Abstraction Function 
You might get the impression that abstraction functions state the obvious: that just 
looking at the rep, you could guess how it should be interpreted. Much of the time, this is 
actually true, and for this reason abstraction functions are less important than rep 
invariants. (This assumes, by the way, that a human being is interpreting the rep. If you 
want to build a tool that analyzes code automatically for compliance with its spec -- even 
just that modifications are within the scope permitted by a modifies clauses -- you will 
need to provide the tool with an abstraction function.) 

Sometimes, however, a clever representation may have an interpretation that is far from 
obvious. In this case, an abstraction function is a very useful bit of documentation. 

Suppose you want to build a Queue datatype whose objects are immutable. It's not 
obvious how to implement this efficiently. We know how to implement an immutable 
List; the cons operation simply creates a new list whose tail is the old list, and the car 
and cdr operations do the opposite, breaking the list into the first element and the tail. 
The snag with a queue is that the elements go on one end and come off the other. Note 
that this is essentially implementing a stack. 

A very clever solution is to employ a pair of immutable lists. (This idea is well-known in 
the functional programming community.) The field declarations in Java may look 
something like this: 

class ImmutableQueue {
 ImmutableList back; 
 ImmutableList front; 

... 

} 
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The queue is broken in two. Elements at the front of the queue appear in the list front 
in natural order. Elements at the back of the queue appear in the list back, in reversed 
order. We've just described the abstraction function. A bit more precisely, 

A(q) = A(q.front)) ^ rev(A(q.back)) 

Note that the definition uses the abstraction function on lists. We are assuming these 
lists represent mathematical sequences, and that rev is a function that reverses a 
sequence, and ^ is the concatenation operator. We are also assuming that, in our 
abstract model of a queue, we think of the elements as ordered so that the first element 
to be removed will be at the beginning of the list. 

Here's how the rep is manipulated. To enqueue an element, we simply cons it to the  
back list. To dequeue an element, we take it off the front list using car and cdr if the 
list is non-empty. If it's empty, we reverse the back list, and make it the front list, and 
replace the back list by the empty list. Here’s an example: 

Assume the queue is initially empty with the back list and the front list being empty.  If 
A, B and C are enqueued, the back list becomes CBA and the front list is still empty. 
If we wish to dequeue, then the back list is reversed to create an ABC front list, the 
back list is set to empty, and A is dequeued by taking the car of the front list. At this 
point enqeueing D and E results in a back list of ED and a front list of BC.  A(q) will 
interpret this concrete configuration as the abstract queue BCDE. 

Reversing the list takes time proportional to its length. So, if a lot of enqueue 
operations have been performed without an intervening dequeue, a single dequeue 
operation may take some time. But note that each element can only participate in one 
reversal. The total cost of the reversals over the life of the queue is proportional to the 
number of elements dequeued. So the cost of each operation is, averaged over all the 
operations, constant time. This kind of analysis is called an amortized analysis, because 
the cost of a single operation is 'amortized' over all operations. 

8.4 Specification Fields 

The abstract values of many abstract data types have a tuple structure at the top-level. 
For example, a line is a pair of points; a mailing address is a number, a street, a city and 
a zipcode; a URL is a protocol, a host name, and a resource name. 

In these cases, one can specify a single function that maps representation objects to 
tuples. This is the approach followed by our textbook. But it's convenient, and perhaps 
more natural, to break the function into several separate functions, each viewed as 
defining a 'specification field'. 

For example, we might represent a Card datatype, used in card game program, by a 
single integer in a field index. The rep invariant requires index be in the range 0 .. 
51. We might have two specification fields defined as follows: 

c.suit = S(c.index div 13) 
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c.val = V(c.index mod 13)

where 


S(0) = Hearts, S(1) = Spades,

S(2) = Clubs, S(3) = Diamonds

V(1) = Ace, V(2) = 2, ..., V(11) = Jack,

V(12) = Queen, V(0) = King 


so that a Card object with index field of 3, for example, would correspond to the Three 
of Hearts; 14 corresponds to the Ace of Spades. This abstraction function maps each 
representation object c to a pair (c.suit, c.val), but rather than writing it as a 
single function, we've specified it as two separate ones, one for each specification field. 

This scheme is so convenient that we'll use it even when there is only one specification 
field. For example, when we refer to the ith element of a vector v as v.elts[i], this 
used a specification field elts whose value is a mathematical sequence. It allowed us 
to talk about the elements of the vector without mentioning the representation. Without 
the specification field, we would have to write A(v) to denote the vector's element 
sequence, to distinguish it from the value of v itself -- a Java object reference. 

Our abstraction function for our immutable queue now becomes 

q.elts = q.front.elts ^ rev (q.back.elts) 

Note that there are two different elts fields here: the one on the left corresponding to 
the abstraction function of queues, and the two occurrences on the right corresponding 
to the abstraction function of lists. For annotating code, specification fields are especially 
convenient. Using the convention that we can omit explicit mention of this, we might 
write, for example 

abstraction function 

elts: sequence of elements in queue,


in order from first to last out 

elts = front.elts ^ rev(back.elts) 


as a comment in the Queue class. 

8.5 Benevolent Side Effects 
What is an observer operation? In our introductory lecture on representation 
independence and data abstraction, we defined it as an operation that does not mutate 
the object. We can now give a more liberal definition. 

An operation may mutate an object of the type so that the fields of the representation 
change, will maintaining the abstract value it denotes. We can illustrate this 
phenomenon in general with a diagram: 
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The execution of the operation op mutates the representation of an object from r1 to r2. 
But r1 and r2 are mapped by the abstraction function A to the same abstract value a, 
so the client of the datatype cannot observe that any change has occurred. 

Why would you want to make such a mutation? Usually the reason is to improve 
performance. Suppose clients of a table datatype often look up the same key repeatedly. 
It might then make sense to cache the key and its value as a hint when a get is 
performed. On a subsequent get the first thing you do is to check to see if the key is 
the one that was just looked up; if so, you can return the value without doing a full 
lookup. The point is that the client of the datatype cannot see that the value just obtained 
has been cached (except by noticing an improvement in performance); all it cares about 
is that get is an observer in the sense that one get can’t affect the value obtained by a 
later get. 

In general, then, we can allow observers to mutate the rep, so long as the abstract value 
is preserved. We will need to ensure that the rep invariant is not broken, and if we have 
coded the invariant as a method checkRep, we should insert it at the start and end of 
observers. 

8.6 Summary 

The abstraction function specifies how the representation of an abstract data type is 
interpreted as an abstract value. Together with the representation invariant, it allows us 
to reason in a modular fashion about the correctness of an operation of the type. 

In practice, abstraction functions are harder to write than representation invariants. 
Writing down a rep invariant is always worthwhile, and you should always do it. Writing 
down an abstraction function is often useful, even if only done informally. But sometimes 
the abstract domain is hard to characterize, and the extra work of writing an elaborate 
abstraction function is not rewarded. You need to use your judgment. 
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