Introduction to ADTSs
6.170, Lecture 7
Fall 2005

This lecture is the first in a series on data abstraction. It explains the motivation for data
abstraction, and the key ideas of characterization by operations, and representation in-
dependence. In subsequent lectures, we’ll delve more deeply into the theory of abstract

types.

7.1 User-Defined Types

In the early days of computing, a programming language came with built-in types (such
as integers, booleans, strings, etc.) and built-in procedures, eg. for input and output.
Users could define their own procedures: that’s how large programs were built.

A major advance in software development was the idea of abstract types: that one could
design a programming language to allow user-defined types too. This idea came out
of the work of many researchers, notably Dahl (the inventor of the Simula language),
Hoare (who developed many of the techniques we now use to reason about abstract
types), Parnas (who coined the term ‘information hiding’ and first articulated the idea
of organizing program modules around the secrets they encapsulated), and here at MIT,
Barbara Liskov and John Guttag, who did seminal work in the specifica-tion of abstract
types, and in programming language support for them (and developed 6170!).

The key idea of data abstraction is that a type is characterized by the operations you can
perform on it. A number is something you can add and multiply; a string is something
you can concatenate and take substrings of; a boolean is something you can negate,
and so on. In a sense, users could already define their own types in early programming
languages: you could create a record type date, for example, with integer fields for day,
month and year. But what made abstract types new and different was the focus on oper-
ations: the user of the type would not need to worry about how its values were actually
stored, in the same way that a programmer can ignore how the compiler actually stores
integers. All that matters is the operations.

In Java, as in many modern programming languages, the separation between built-in
types and user-defined types is a bit blurry. The classes in java.lang, such as String and
Integer are regarded as built-in (especially String since it has its own special syntax for
literals); whether you regard all the collections of java.util as built-in is less clear (and
not very important anyway). Java complicates the issue by having primitive types that
are not objects. The set of these types, such as int and boolean, cannot be extended by
the user.
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7.2 Classifying Types and Operations

Types, whether built-in or user-defined, can be classified as mutable or immutable.
The objects of a mutable type can be changed: that is, they provide operations which
when executed cause the results of other operations on the same object to give different
results. So Vector is mutable, because you can call addElement and observe the change
with the size operation. But String is immutable, because its operations create new
string objects rather than changing existing ones. Sometimes a type will be provided in
two forms, a mutable and an immutable form. StringBuffer, for example, is a mutable
version of String (although the two are certainly not the same Java type, and are not
interchangeable).

Immutable types are generally easier to reason about. Aliasing is not an issue, since
sharing cannot be observed. And sometimes using immutable types is more efficient,
because more sharing is possible. But many problems are more naturally expressed us-
ing mutable types, and when local changes are needed to large structures, they tend
to be more efficient. Often, when you design an abstract type, it won’t be immediately
obvious whether the type should be mutable or immutable. You should generally err on
the side of making it immutable; novices make much too much use of mutable types
(and pay the price in complexity and poor performance).

The operations of an abstract type are classified as follows:
Creators create new objects of the type. A creator may take an object as an argument,
but not an object of the type being created.
Producers create new objects from old objects. The concat method of String, for ex-
ample, is a producer: it takes two strings and produces a new one representing their
concatenation.
Mutators change objects. The addElement method of Vector, for example, mutates a
vector by adding an element to its high end.
Observers take objects of the abstract type and return objects of a different type. The
size method of Vector, for example, returns an integer.

We can summarize these distinctions schematically like this:

721 creator: t->T

722 producer: T, t ->T
723 mutator: T, t -> void
724 observer: T, t >t

These show informally the shape of the signatures of operations in the various classes.
Each T is the abstract type itself; each t is some other type. An occurrence of a t on the
left hand side is short for zero or more occurrences of other types (which may differ
from one another); an occurrence of T on the left is short for one or more occurrences
of the abstract type.
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For example, string concatenation has the signature
725 concat: String, String -> String
matching the shape

726 concat: T, T -> T
727 and is therefore a producer. The size method has the signature

728 size: String -> int
matching the shape

729 size: T ->t
and is therefore an observer.

Remember when examining a method to include the receiver argument; a method like
concat appears in Java with a signature with one argument and one result because the
receiver is implicit.

This classification gives some useful terminology, but it’s not perfect. In many of the
Java collection classes (in java.util), for example, mutators often return a reference to
the abstract object or to a previous value held inside it. and may thus also be classified
as producers or observers. Some people use the term ‘producer’ to imply that no muta-
tion occurs.

Note that our terms don’t line up neatly with Java notions. Constructors and creators
are not the same, for example: a copy constructor is not a creator (because it takes a
value of the abstract type), and a factory method is a creator but not a constructor. This
can be a bit confusing, but it’s useful to make more general distinctions than Java, and
not to be tied to one programming language.

There’s a bit of a terminological mess surrounding iteration. Some languages, such as
CLU, provided a special kind of procedure for iteration that returned elements one at a
time, and retained its program counter between calls; it was called as iterator. In Java,
an iterator is an object that provides methods for iterating over a collection. The term
generator used to be a synonym of producer, but our course text uses it to refer to a
method that returns an iterator!

7.3 Example: List

Let’s look at an example of an abstract type: the list. A list, in Java, is like an array. It
provides methods to extract the element at a particular index, and to replace the ele-
ment at a particular index. But unlike an array, it also has methods to insert or remove
an element at a particular index. In Java, List is an interface with many methods, but for
now, let’s imagine it’s a simple class with the following methods:
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731 public class List {

732 public List ();

733 public void add (int i, Object e);
734 public void set (int i, Object e);
735 public void remove (int i);

736 public int size ();

737 public Object get (int i);

7.38 }

The add, set and remove methods are mutators; the size and get methods are observers.

It's common for a mutable type to have no producers (and an immutable type certainly
cannot have mutators).

To specify these methods, we’ll need some way to talk about what a list looks like. We do
this with the notion of specification fields or abstract fields. You can think of an object of
the type as if it had these fields, but remember that they don'’t actually need to be fields
in the implementation, and there is no requirement that a specification field’s value be

obtainable by some method. In this case, we’ll describe lists with a single specification
field,

739 seq [Object] elems;

where for a list |, the expression l.elems will denote the sequence of objects stored in the
list, indexed from zero. Now we can specify some methods:

7310 public void get (int i);

7311 // throws

7312 // IndexOutOfBoundsException if i < 0 or i > length (this. elems)
7313 // returns

7314 // this.elems [i]

7315 public void add (int i, Object e);

73.16 // modifies this

7347 // effects

73.18 // throws

7319 //IndexOutOfBoundsException if i < 0 or i > length (this. elems)

1320 // NullPointerException if e is null

2321 // else this.elems = this_pre.elems [0..i-1] » <e> * this_pre.elems [i..]

7322 public void set (int i, Object e);

7323 // modifies this

1324 /) effects

1325 // throws IndexOutOfBoundsException if i < 0 or i >= length (this. elems)
7326 // NullPointerException if e is null

132z //  else this.elems [i] = e and this.elems unchanged elsewhere
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In the postcondition of add, I've used s[ i..j] to mean the subsequence of s from indices i
to j, and s[ i..] to mean the suffix from i onwards. The caret means sequence concatena-
tion. So the postcondition says that, when the index is in bounds or one above, the new
element is ‘spliced in” at the given index.

7.4 Designing an Abstract Type

Designing an abstract type has two aspects: specification (ie, choosing operations and
determining how they should behave) and implementation (selecting a representation).
The specification aspect is almost always the more challenging and important, because
it’s less easily changed later.

7.4.1 Specification Design

A few rules of thumb:
It’s better to have a few, simple operations that can be combined in powerful ways
than lots of complex operations.
Each operation should have a well-defined purpose, and should have a coherent be-
haviour rather than a panoply of special cases.
The set of operations should be adequate; there must be enough to do the kinds
of computations clients are likely to want to do. A good test is to check that every
property of an object of the type can be extracted. For example, if there were no get
operation, we would not be able to find out what the elements of the list are. Basic
information should not be inordinately difficult to obtain. The size method is not
strictly necessary, because we could apply get on increasing indices, but this is inef-
ficient and inconvenient.
The type may be generic: a list or a set, or a graph, for example. Or it may be domain-
specific: a street map, an employee database, a phone book, etc. But it should not mix
generic and domain-specific features.
Although functionality is your first concern, efficiency is important too. You need to
ensure that the operations allow a client of the type to work efficiently. This impacts
the choice of operations in two ways: you have to include the right operations so the
client doesn’t have to do something convoluted, and you must design the operations
so they can be implemented efficiently.

7.4.2 Implementation: Choice of Representation

So far, we have focused on the characterization of abstract types by their operations. In
the code, a class that implements an abstract type provides a representation: the actual
data structure that supports the operations. The representation will be a collection of
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fields each of which has some other Java type; in a recursive implementation, a field may
have the abstract type but this is rarely done in Java.

Linked lists are a common representation of lists, for example. The following object
model shows a linked list implementation similar (but not identical to) the LinkedList
class in the standard Java library:

The list object has a field header that references an Entry object. An Entry object is a
record with three fields: next and prev which may hold references to other Entry objects
(or be null), and element, which holds a reference to an element object. The next and
prev fields are links that point forwards and backwards along the list. In the middle of
the list, following next and then prev will bring you back to the object you started with.
Let’s assume that the linked list does not store null references as elements. There is al-
ways a dummy Entry at the beginning of the list whose element field is null, but this is
not interpreted as an element.

The following object diagram shows a list containing two elements::

Note how the last entry points to the header entry: this is why the next and prev fields
are marked as one-to-one in the object model.

Another, different representation of lists uses an array. The following object model
shows how lists are represented in the class ArraylList in the standard Java library:

Here’s a list with two elements in this representation:

These representations have different merits. The linked list representation will be more
efficient when there are many insertions at the front of the list, since it can splice an ele-
ment in and just change a couple of pointers. The array representation has to bubble all
the elements above the inserted element to the top, and if the array is too small, it may
need to allocate a fresh, larger array and copy all the references over. If there are many
get and set operations, however, the array list rep-resentation is better, since it pro-
vides random access, in constant time, while the linked list has to perform a sequential
search.

Another important consideration is ease of implementation. The array representation is
probably easier to implement (and certainly easier to get right). It uses fewer objects and
has fewer invariants. We'll look at rep invariants in detail in a later lecture.

We may not know when we write code that uses lists which operations are going to
predominate. The crucial question, then, is how we can ensure that it’s easy to change
representations later.
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7.5 Representation Independence

Representation independence means that the use of an abstract type is independent of
its representation, so that changes in representation have no effect on code outside the
abstract type itself. Let’s examine what goes wrong if there is no independence, and then
look at some language mechanisms for helping ensure it.

Suppose we know that our list is implemented as an array of elements. We're trying to
make use of some code that creates a sequence of objects, but unfortunately, it creates
a Vector and not a List. Our List type doesn’t offer a producer that does the conversion
from Vector. But we discover that Vector has a method copyInto that copies the elements
of the vector into an array. Relying on our knowledge that List is represented as an array
with the field elementData, we now write:

751 List | = new List ();
751 V. copyInto (L. elementData);

What a clever hack! Like many hacks it works for a little while. Suppose the implemen-
tor of the List class now changes the representation from the array version to the linked
list version. Now the list | won’t have a field elementData at all, and the compiler will re-
ject the program. This is a failure of representation independence: we’ll have to change
all the places in the code where we did this.

Having the compilation fail is not such a disaster. It's much worse if it succeeds and the
change has still broken the program. Here’s how this might happen.

In general, the size of the array will have to be greater than the number of elements in the
list, since otherwise it would be necessary to create a fresh array every time an element
is added or removed. So there must be some way of marking the end of the segment of
the array containing the elements. Suppose the implementor of the list has designed it
with the convention that the segment runs to the first null reference, or to the end of the
array, whichever is first. Unluckily, our hack works under these circumstances.

Now our implementor realizes that this was a bad decision, since determining the size
of the list requires a linear search to find the first null reference. So she adds a size field
and updates it when any operation is performed that changes the list. This is much
better, because finding the size now takes constant time. It also naturally handles null
references as list elements.

Now our clever hack is likely to produce some strange behaviours. The list we created
has a bad size field: it will hold zero however many elements there are in the list (since
we updated the array alone, and not the size field). Get and set operations will probably
fail (assuming that they reject an index greater than the size), and a call to size will cer-
tainly return the wrong value.
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Here’s another example. Suppose we have the linked list implementation, and we in-
clude an operation that returns the Entry object corresponding to a particular index.

753 public Entry getEntry (int i)

Our rationale is that if there are many calls to set on the same index, this will save the
linear search of repeatedly obtaining the element. Instead of

754 l. set (i, x);
755

756 l. set (i, y);
we can now write

757 Entry e = 1. getEntry (i);
758 €. element = x;

759 cee

7510 e, element = y;

This also violates representation independence, because when we switch to the array
representation, there will no longer be Entry objects. This is the obvious problem, but
there are more subtle problems. Suppose we assign null to the element of an entry.
The specification of add (see 6.3.15 above) rejects attempts to insert a null value as an
element. The implementor may rely on this, and find the header entry on a traversal
around the ring by checking to see whether the element field is null. This assignment
causes an entry that is not the header to have a null element field, so the code is now
likely to break.

We can illustrate the problem with a ‘module dependency diagram’”:

There should only be a dependence of the client type Client on the List class (and on the
class of the element type, in this case Object, of course). The dependence of Client on En-
try is the cause of our problems. Returning to our object model for this representation,
we want to view the Entry class and its associations as internal to List. We can indicate
this informally by colouring the parts that should be inaccessible to a client red (if you're
reading a black and white printout, that’s Entry and all its incoming and outgoing arcs),
and by adding a specification field elems that hides the representation:

7.6 Language Mechanisms

To prevent access to the representation, we can make the fields private. This eliminates
the array hack; the statement

761 v. copyInto (1. elementData);

would be rejected by the compiler because the expression l.elementData would illegally
reference a private field from outside its class.
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The Entry problem is not so easily solved. There is no direct access to the representation.
Instead, the List class returns an Entry object that belongs to the representation. This
is called representation exposure, and it cannot be prevented by language mechanisms
alone. We need to check that references to mutable components of the representation
are not passed out to clients, and that the representation is not built from mutable
objects that are passed in. In the array representation for example, we can’t allow a con-
structor that takes an array and assigns it to the internal field.

Interfaces provide another method for achieving representation independence. In the
Java standard library, the two representations of lists that we discussed are actually dis-
tinct classes, ArrayList and LinkedList. Both are declared to extend the List interface.
List declares only the operations and doesn’t give representations or code:

762 public interface List {
763 void add (int i, Object e);
764 void set (int i, Object e);

765 void remove (int i);
766 int size ();

767 Object get (int i);
7.6.8 }

and the two classes are declared as implementations of List:

769 public class LinkedList implements List {
76.10 private Entry header;
7.6.11

7.6.12 }

7613 public class ArrayList implements List {
76.14 private Object[] eltData;

7.6.15
7.6.16 }

Whenever possible, clients refer only to the List interface, so the classes containing the
representations are not accessible. Here’s a standard idiom for creating and manipulat-
ing objects:

7617 List | = new LinkedList ();

7.6.18

7619 l.add (i, e);

Note that the interface can’t be used to construct the object; an interface has no con-
structors, and it is at the point of creation that we need to specify the implementation.
But we have carefully declared the result of the constructor call as a List and not a
LinkedList. A subsequent reference to l.header would now be illegal, even if the field
were declared public.
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The depedendences on the concrete classes due to constructor calls are localized as
much as possible, but sometimes we would like to mitigate them further. The Factory
pattern, which we will discuss later in the course, addresses this particular problem.

7.7 Summary

Abstract types are characterized by their operations. Representation independence
makes it possible to change the representation of a type without its clients being
changed. In Java, access control mechanisms and interfaces can help ensure indepen-
dence. Representation exposure is trickier though, and needs to be handled by careful
programmer discipline.
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