
1 

Testing 

6.170 Lecture 5 

Fall 2005 

Reading: Chapter 10 of Program Development in Java by Barbara Liskov 

Program verification techniques and input space partitioning 

The goal of testing — like that of all other program verification techniques — is to ensure that 
a program functions correctly. Testing cannot prove the absence of errors, only their presence. 
However, thorough testing can increase confidence in software, under the assumption that most 
errors would have been exposed by some test. 

Here are three techniques for verifying programs: 

1.	 Prove correctness This approach requires writing exhaustive, precise formal specifications 
(preconditions, postconditions, and usually loop invariants), then proving that these specifi­
cations are satisfied by the code and its environment. The proof can be performed by hand, 
but for non-trivial programs, the proofs are long and tedious and humans are prone to errors, 
so theorem-proving software is usually used instead. It often requires human direction rather 
than being fully automated, and some program properties (such as many involving pointers 
and references) are currently beyond the state of the art in program analysis. 

While any result is guaranteed to hold for any possible execution, correctness proofs are not 
cost-effective because of the difficulty of writing and proving specifications. Additionally, this 
technique only puts off a problem rather than fully solving it: how do you verify that the 
specification is correct? 

2.	 Run the program on all possible inputs If we run the program on every possible input 
and check each output for correctness, then we are guaranteed that the program is correct: 
it operates correctly no matter what input it is given. Checking the output is usually done 
by recording the expected answer and comparing the actual answer against that, though the 
checking may also be done procedurally. The desired outputs can be generated by hand (for 
small inputs) or by a simpler implementation that has been independently verified (for larger 
inputs). 

This technique is infeasible in practice because the space of inputs may be infinite (a word 
counting program may take as input an arbitrary file of characters) or effectively so (an 
arithmetic routine may take as input three Java int values; there are 4294967296 different 
int values, so there are about 8 × 1028 different triples of int values). 

3.	 Run the program on some inputs Running a program on only some inputs does not 
provide the guarantee of correctness that the first two options do. Just because a program 
works the first 1000 times it is run does not mean it will work the next time. However, if the 

1




2 

particular test cases are carefully chosen, then we may have high confidence that the program 
will work on all inputs. 

The idea behind this approach is to partition the space of all possible inputs into equivalence 
groups such that the program “behaves the same” on each group. If the program fails on any 
member of an equivalence group, then it fails for all members of the equivalence group, and 
if it works for any member of the equivalence group, then it works for all members. Testing 
one member is equivalent, in terms of finding errors, to testing every member of the group. 
Thus, a test suite that includes one (arbitrary) input from each equivalence group provides 
complete testing of the implementation. 

The difficulty with this idea is that it is just as hard to find the equivalence classes of inputs 
for which the program behaves the same as it is to prove correctness. Therefore, we will use 
heuristics (rules of thumb that are generally useful but do not guarantee correctness) to select 
a set of test cases. We will hope that at least one of the test cases appears in each of the 
true (unknowable) equivalence classes. We will approach this problem in two ways, both by 
guessing equivalence classes (and then selecting test cases in them to include in our test suite) 
and by adding additional test cases that are designed to account for potential problems with 
our guesses at the equivalence classes. If we could guess the equivalence groups correctly (or, 
if we could guarantee that our equivalence groups are smaller than the true ones, so that a 
set of cases that covers all of our groups is guaranteed to cover all of the true groups), then 
we would just need one test case from each and we would be done, for the resulting test suite 
would be guaranteed to find all bugs. 

Heuristics for test case selection 

These heuristics can be thought of as telling us how to select test cases, or as how to partition the 
input space. The end result is the same: we have guidance about how to build a test suite. 

Three key heuristics for test suite selection are coverage, boundary cases, and duplicates. 

•	 Coverage This is the key heuristic used in testing. Coverage criteria aims to make some 
input partition (some test case) exercise each code or specification construct. Since different 
construct are likely to have different behavior, a test suite that uses each one is more likely 
to be complete than one that doesn’t. 

Complete coverage of code is usually impossible. Error checking code may never execute 
(by design) or be difficult to trigger, and dead (unreachable) code can never be executed. 
Coverage is ineffective in catching errors of omission. 

Many tools exist to check the code coverage of a test suite; a number of testing methodologies 
require certain levels of coverage. Some types of coverage are statement coverage (each 
statement is executed by the test suite), branch coverage (each branch is taken at some point 
and not taken at some point by the test suite), decision coverage (each boolean component 
of a conditional, such as a and b in if (a && b) ..., evaluates to true at some point and 
to false at some other point), def-use coverage (every use of a variable is reached by each 
definition of the variable), and path coverage (every loop-free path, or sequence of subsequent 
statements, in a method is followed on some execution). 

Coverage of a domain requires having an element in each part of it. For a monolithic domain, 
this requires only one test case. Some domains have a natural structure, and in such a case 

2




all parts should be covered. For instance, given an integer output, it would be wise to supply 
negative, positive, and zero inputs. 

•	 Boundary cases When drawing equivalence class boundaries, even if the general idea is 
correct, the boundaries may be slightly incorrect: perhaps they are shifted a bit, and/or 
there are small equivalence classes at the boundaries of larger ones. 

For instance, you might reason that the program behaves one way for inputs less than 10, 
another way for inputs between 10 and 20 inclusive, and yet another way for inputs greater 
than 20. Thus, you might suppose test cases 9, 20, and 21 to be exhaustive. Suppose that 
you were slightly wrong, and in fact a correct partition would be into inputs less than 10, 
inputs greater than or equal to 10 but less than 20, and inputs greater than or equal to 20. 
Then your tests only cover two of the three partitions. 

7� 8� 9� 

Tester's guess at partition� 

Actual partition� 

10� 11� 12� 13� 14� 15� 16� 17� 18� 19� 20� 21� 22� 23� 

As another example, you might reason that another program behaves one way for inputs less 
than 10 and another way for inputs greater than or equal to 10; you presume that the test 
suite consisting of 5 and 15 is exhaustive. Suppose that your reasoning was faulty and the 
program has three modes of behavior: one for inputs less than 10, one for the input 10, and 
one for inputs greater than 10. (Maybe the input 10 should have behaved like inputs greater 
than 10, but your code contains an error.) Again, your test suite fails to cover one of the 
three true partitions. 

7� 8� 

Tester's guess at partition� 

Actual partition� 

4� 5� 6� 16�9� 10� 11� 12� 13� 14� 15� 

As insurance against incorrect selection of equivalence class boundaries, you can include — in

addition to “typical” values near the center of the class — test cases near the boundaries. It


3




is wise to include both maximal or minimal values (right on the boundary) and also their 
neighbors. Don’t forget to test both the minimal and the maximal boundaries. For instance, 
if a method takes a non-negative BigInteger as its argument, you might supply 0, 1, 2, and 
some very large values as inputs. 

The use of large, complicated inputs (which is essentially the maximal boundary case for un­
bounded inputs) is sometimes called “stress testing.” It is particularly useful when the system 
under test does not check its representation invariants, preconditions, or postconditions. If 
something goes wrong in such a system, it may not be immediately apparent. A lengthy run 
of the program gives the problem time to manifest itself. 

•	 Duplicates Programs often behave differently when their inputs have particular relationships 
to one another. For instance, consider the following routine: 

// modifies: v1, v2 
// effects: removes all elements of v2 and appends them in reverse order 
// to the end of v1 
// throws: NullPointerException if v1 is null or v2 is null 
static void appendVector (Vector v1, Vector v2) { 

while (v2.size() > 0) { 
Object elt = v2.remove(v2.size()-1); 
v1.add(elt); 

}

}


It works correctly unless its two arguments are the same Vector, in which case it loops forever. 
Aliasing, or multiple references to the same object, is the most common kind of problem, but 
other kinds of duplication can also be problematic. 

The three heuristics should be applied to: 

•	 input values 

•	 output values 

•	 non-explicit values, such as the number of loop iterations, the size of a set, the number of 
occurrences of a particular element, and the like. These quantities affect the behavior of the 
code, explicitly or implicitly. 

The heuristics are applicable to both black-box testing, which depends only on the specification, 
and to clear-box testing, which examines the implementation. When multiple heuristics are ap­
plicable, you should take their cross-product; for instance, if one heuristic suggests two partitions 
(say, over one input) and another suggests three partitions (say, over another input), then the test 
suite should include at least six test cases. 

Black-box testing 

Black-box test cases are generated by examining the specification. These tests are sometimes called 
“functional tests” because they test the program’s functionality but not its implementation. Black-
box tests avoid the pitfall of examining the implementation and repeating its errors or assumptions; 

4


3 



they are essentially an independent verification of functionality. Such tests are representation-
independent and can be reused — and are just as valid and complete — even if a new implementation 
is substituted for the old one. 

Given the following specification, 

// returns the absolute value of its input 
int abs(int x); 

the three heuristics produce the following test cases: 

•	 coverage 

–	 input: include some test. The input domain is monolithic rather than partitioned, so 
one test covers it. (Integers actually do have inherent structure, so realistically it would 
be better to subdivide it into three equivalence classes for negative, zero, and positive 
integers, and apply the heuristics to each of the classes separately.) 

–	 output: include some test. The output is the integers also. (Actually, it’s the non­
negative integers; we will use that fact later.) 

–	 non-explicit values: none are obvious here, so no tests are added. 

•	 boundary cases 

–	 input: the integers range from Integer.MIN VALUE to Integer.MAX VALUE, so those val­
ues (and those one greater or less, respectively) should be provided as input. Supplying 
Integer.MIN VALUE would uncover a bug in our implementation: no Java function can 
satisfy the specification, because Integer.MIN VALUE = -2147483648 and Integer.MAX VALUE 
= 2147483647. 

–	 output: if the output is viewed as the ints, we would attempt to produce outputs 
of Integer.MIN VALUE and Integer.MAX VALUE (and their neighbors). We would soon 
discover that the outputs are non-negative, so the lower boundary is at 0; tests producing 
0, 1, and possibly 2 would be wise. (This does not specify how to select the inputs; they 
should be selected to be as different as possible, perhaps by using either -1 and 2 or 1 
and -2.) 

–	 non-explicit values: again, none are obvious 

•	 duplicates There is only a single input, a single output, and no non-explicit values, so the 
only tests suggested are one in which the input and output differ and one in which the input 
and output are the same. 

With the specification 

// if x<0, returns -x; else returns x 
int abs(int x); 

covering the specification implies executing each of the branches; this is essentially what would 
be produced by considering the implicit partition of ints into negative, zero, and positive. For 
instance, boundary inputs would include -2 and -1 (the upper boundary of the negative class) and 
1 and 2 (the lower boundary of the positive class). 

Consider your program stutterCount from Problem Set 0. 

5 



4 

// returns the length of the longest stutter in s 
int stutterCount(String s) 

We can apply the three heuristics: 

•	 coverage 

–	 input: include some test; the string input domain is monolithic. (Inputting the empty 
string is a wise choice and implicitly suggested; it will also be covered by other heuristics, 
below.) 

–	 output: include some test; the non-negative integers are also monolithic. (Only the 
empty string would return zero, which is again suggested, if the output domain is im­
plicitly partitioned.) 

–	 non-explicit values: some non-explicit values are the length of the input, the length of 
the stutter, the location of the stutter (its distance from the beginning or the end), the 
number of stutters in the string, and the number of maximal-length stutters. These are 
all non-negative integers. It would be wise to include tests which make them zero; the 
boundary cases will take care of that as well. 

•	 boundary cases 

–	 input: boundary cases include the empty string, one-character strings, and very long 
strings


– output: boundary cases include output of 0, 1, and a large number


–	 non-explicit values: make tests which cause each of the above values listed above be 0, 
1, and large. Such values may or may not appear in the implementation. If they do 
appear in the implementation, we achieve code coverage of a sort. Otherwise, they may 
or may not be useful, but they don’t hurt. 

•	 duplicates A string (of whatever length) containing only a single character achieves the goal 
of making the stutter be the same as the whole string. Another kind of duplication is having 
multiple stutters of the same length, either with the same character or with different char­
acters. Such stutters might be adjacent or not (essentially introducing a new non-explicit 
value, the distance between them, that can be made to be zero, small, or large). These are 
reasonable tests: it would not be surprising for the routine not to reset an internal variable 
correctly, particularly if it were extended to return the character as well as the length of the 
stutter. 

Clear-box testing 

Clear-box test cases are generated by looking at the implementation. Such tests are sometimes 
called “glass-box” or “white-box” (by contrast with “black-box”), or “structural” (by contrast 
with “functional”), because they are chosen by considering the lexical or other structure of the 
code. 

Such test cases are especially effective at finding problems with special cases that are handled 
differently by the code (but are not mentioned in the specification because the result should have 
the same property) or with optimizations (which are the source of many bugs and complicate the 
code, again permitting leeway for a mostly-correct implementation with unexpected behavior in 
non-obvious places. 

Consider the following routine: 

6 



// returns the maximum of its arguments

int max3(int x, int y, int z) {


if (x>y) {

if (x>z) return x; else return z;


} else {

if (y>z) return y; else return z;


}

}


The declarative specification is much better than an operational (procedural) one, but it only 
suggests three different test cases in which the first, second, and third arguments are returned. (An 
ambitious tester might notice that there are only six possible orderings among the inputs and test 
them all; an even more ambitious one would permit duplications among inputs; but let’s assume 
that those reasonable steps are not taken. For examples small enough to fit in the lecture notes, 
many different heuristics may produce the same test cases. That is less often the case with real 
code.) 

Achieving black box coverage does not guarantee clear-box coverage; four tests are needed. For 
any three tests, at least one statement is not executed. That might well fail to locate a cut-and-
paste error which resulted in, say, x being substituted for y or z at some point — an easy error to 
make in this kind of code. 

A single test case can cover every statement of this program: 

int abx(x) { 
if (x<-1) 
x = -x; 

return x;

}


However, it requires at least two test cases to achieve branch coverage (and those two cases achieve 
every variety of glass-box coverage). Likewise, branch coverage does not imply path coverage. Two 
executions can ensure branch (and statement) coverage of 

if (p1)

a;


else

b;


if (p2)

c;


else

d; 

if the first sets p1 and p2 to true and the second sets them to false. There are four paths through 
the code, however (including the ones that execute a; then d; and b; then c;). If p1 and p2 are 
related (one implies the other, for instance), then path coverage is impossible to achieve. 

Clear-box coverage can never find errors of omission. Consider the following procedure: 

int max3(int x, int y, int z) {

return x;


}


7 



5 

The single test case 3 2 1 achieves complete coverage, but fails to reveal that this implementation 
is quite flawed! 

Examination of the code can reveal additional quantities, such as local variables, to which the 
heuristics can be applied (to obtain tests which cause those variables to contain a range of values). 
As another example, a good test suite will try to execute each loop zero, one, two, and many times 
on different executions of a procedure. 

Test strategy and automation 

An adequate testing strategy uses both black-box and clear-box testing, because they are useful in 
different ways and find different sorts of errors. Do black-box testing, which works best when the 
test cases are generated without any knowledge of the code, first. Such test cases are ideally written 
by someone who has never seen the code (or discussed its design) but only read the specification. 

You may read about various types or levels of testing, such as unit, module, system, and 
acceptance testing. These refer to testing larger and larger portions of an entire system and are 
described in many software engineering books. 

Testing can be performed either bottom-up, in which subpieces are verified before they are 
assembled into pieces, then those pieces are verified before being put together into even larger 
components, or top-down, in which the entire system is tested before the pieces are built, and the 
system is filled in from the root. 

Consider the following Module Dependency Diagram: 

A� 

B� C� 

D� E� F� 

Bottom-up testing would test D before B; E and F before C; and B and C before A. Top-
down testing would test A before B or C; B before D; and C before E or F. Bottom-up testing 
requires the writing of drivers which exercise the functionality of the class. Drivers simulate both its 
environment (how it is called) in the system you are building, and all other environments in which 
it may be called according to its specification. A driver is required in order to perform complete 
testing, so bottom-up testing does not place any additional demands on the tester. Top-down 
testing requires writing stubs which simulate the behavior of the parts of the system that are not 
yet written or tested. The advantage of this approach is that design errors can be identified early 
rather than only when most of the system is built (and the pieces still don’t work together). 

In general, the right approach to testing is to do the variety which suits your development style. 
Testing as you code is more effective because you remember the code better and can find bugs more 
quickly. Especially if such problems might affect the rest of the design (for instance, a specification 

8




6 

is not efficiently satisfiable), it is helpful to be informed of that fact early. It also results in a usable 
product rather than one that is buggy and thus less likely to be useful in your system. (The same 
thing goes for documentation.) Additionally, since you are testing only a small amount of code at 
a time, if there is a problem, it is easier to find. It is reasonable to test an entire class at a time 
rather than a method at a time (unless the class or method is large and complicated). 

Regression testing means re-testing your code after you make a change. This is crucial because 
it is very easy to introduce a new bug when you fix an old one, but many people don’t bother to 
re-validate their implementation after making corrections, extensions, or other modifications. If 
tests are easy to run (for instance, you have written a test driver), then regression testing is very 
easy to do. 

Another effective testing strategy is to use assertions. An assertion checks a property and raises 
an error if the property is not satisfied. These are useful for verifying preconditions, postconditions, 
and representation invariants. If such properties are violated, then trouble is very likely later on. 
The more quickly such an error is detected (in terms of how many lines of code have executed 
between the occurrence of the error and its detection), the easier it is to locate. Locating an error 
is frequently much, much harder than fixing it. 

Static verification 

The above techniques are dynamic — that is, they run the program and perform checks at runtime. 
An alternative, briefly mentioned in the introduction, is static verification techniques which do not 
run the program. Here are three such techniques: 

•	 run tools. For instance, a theorem-prover may be able to guarantee correctness of a procedure 
in certain circumstances. A checking tool that every programmer uses daily is the compiler. 
The Java compiler guarantees that there is no type error in its input program (or else it will 
issue an error and refuse to generate bytecodes). Since type errors are very hard to discover 
and produce fiendishly difficult-to-debug behaviors, this is a big step forward already. The 
Java compiler also guarantees other properties, such that there is never a use of a variable 
before it is assigned to. 

•	 think about the code. Even if no automatic proof is possible, a human may be able to prove 
properties of code, either formally or by informal reasoning. Even the process of writing down 
the representation invariant, abstraction function, and pre- and post-conditions may reveal 
problems with your code by making you think about it in a structured way. Similarly, the 
act of writing tests (and thinking only about the specification) often leads programmers to 
realize that their implementation does not handle a particular case. 

•	 ask a friend. Code inspections, in which a programmer who did not write the code reads and 
reasons about it, are remarkably effective at finding errors. You aren’t able to do this in the 
first half of 6.170 — that’s what the LAs and TAs are for — but we encourage this for the final 
project. 

9



