
Procedure Specifications

6.170 Lecture 4

Fall 2005

5.1 Introduction
In this lecture, we’ll look at the role played by specifications of methods. Specifications
are the linchpin of team work. It’s impossible to delegate responsibility for implementing
a method without a specification. The specification acts as a contract: the implementor is
responsible for meeting the contract, and a client that uses the method can rely on the
contract. In fact, we’ll see that like real legal contracts, specifications place demands on
both parties: when the specification has a precondition, the client has responsibilities
too.

Many of the nastiest bugs in programs arise because of misunderstandings about
behavior at interfaces. Although every programmer has specifications in mind, not all
programmers write them down. As a result, different programmers on a team have
different specifications in mind. When the program fails, it’s hard to determine where the
error is. Precise specifications in the code let you apportion blame (to code fragments,
not people!), and can spare you the agony of puzzling over where a fix should go.

Specifications are good for the client of a method because they spare her the task of
reading code. If you’re not convinced that reading a spec is easier than reading code,
take a look at some of the standard Java specs and compare them to the source code
that implements them. Vector, for example, in the package java.util, has a very simple
spec but its code is not at all simple.

Specifications are good for the implementor of a method because they give her freedom
to change the implementation without telling clients. Specifications can make code faster
too. Sometimes a weak specification makes it possible to do a much more efficient
implementation. In particular, a precondition may rule out certain states in which a
method might have been invoked that would have incurred an expensive check that is
no longer necessary.

5.2 Contracts, Firewalls, and Decoupling
In traditional engineering disciplines, artifacts can often be constructed out of
components taken off the shelf. These components are selected on the basis of
specifications. This is one crucial role for specification, and indeed it plays this role in
software. Unfortunately, however, software components have been largely an unfulfilled
aspiration; we have small components (such as string manipulation packages) and huge
components (such as relational databases), but very little in between the two. The
problem is that medium-sized components seem to be inflexible, and make conflicting
assumptions about the structure of the program in which they are embedded. So if you
use one of them, you typically can't use another.

And of course software is notoriously unreliable, so its specifications often can't be taken
too seriously. Some companies are more honest than others about the guarantees they
offer:

1

Cosmotronic Software Unlimited Inc. does not warrant that the functions
contained in the program will meet your requirements or that the operation of the
program will be uninterrupted or error-free. However, Cosmotronic Software
Unlimited Inc. warrants the diskette(s) on which the program is furnished to be of
black color and square shape under normal use for a period of ninety (90) days
from the date of purchase.

We don't claim Interactive EasyFlow is good for anything ... if you think it is,
great, but it's up to you to decide. If Interactive EasyFlow doesn't work: tough. If
you lose a million because Interactive EasyFlow messes up, it's you that's out of
the million, not us. If you don't like this disclaimer: tough. We reserve the right to
do the absolute minimum provided by law, up to and including nothing. This is
basically the same disclaimer that comes with all software packages, but ours is
in plain English and theirs is in legalese.

ACM Software Engineering Notes, Vol. 12, No. 3, 1987.

A specification contract imposes obligations on both the client (or user) of the unit
specified, and on the implementor of the unit. The contract is understood as an
implication:

client-meets-obligation => implementor-meets-obligation

For example, your contract with the electricity utility places an obligation on you not to
exceed a certain load, and an obligation on the utility to provide power at a fixed voltage
with only small fluctuations. If you don't exceed the load, and just run an air-conditioner
and a handful of lightbulbs, the utility maintains the voltage. But if you decide to run a
server farm in your basement that takes a megawatt of power, the utility is not obliged to
provide anything.

The contract acts as a firewall between client and implementor. It shields the client from
the details of the workings of the unit -- you don't need to read the source code of the
procedure if you have its specification. And it shields the implementor from the details of
the usage of the unit; he doesn't have to ask every client how she plans to use the unit.
This firewall results in decoupling, allowing the code of the unit and the code of a client
to be changed independently, so long as the changes respect the specification -- each
obeying its obligation.

Specifications actually play two subtly different roles in software. One is to catalog
reusable components: this is the purpose of the specifications in the Java collections
framework, for example. The other is to regulate the connections between modules in a
design. In this role, a single unit may have multiple specifications, one for each client.
The specifications qualify the 'uses' relationship between modules, saying exactly how
one module uses another. As the system evolves, these specifications are the part that
is least affected. Consequently, perhaps more than anything else, these specifications
characterize the design of the software -- they are the design. When we study design
patterns, we'll see how the motivation of most design patterns is to improve the
decoupling of modules, and this is usually achieved by introducing new specifications,
which are weaker than the specifications used in simpler designs.

2

5.3 Behavioral Equivalence
Consider these two methods. Are they the same or different?

static int findA (int [] a, int val) {

for (int i = 0; i < a.length; i++) {

if (a[i] == val) return i;

}

 return a.length;

}

static int findB (int [] a, int val) {

for (int i = a.length -1 ; i > 0; i--) {

if (a[i] == val) return i;

}

 return -1;

}

Of course the code is different, so in that sense they are different. Our question though
is whether one could substitute one implementation for the other. Not only do these
methods have different code; they actually have different behavior:
· when val is missing, findA returns the length and findB returns -1;
· when val appears twice, findA returns the lower index and findB returns the

higher.

But when val occurs at exactly one index of the array, the two methods behave the
same. It may be that clients never rely on the behavior in the other cases. So the notion
of equivalence is in the eye of the beholder, that is, the client. In order to make it
possible to substitute one implementation for another, and to know when this is
acceptable, we need a specification that states exactly what the client depends on.

In this case, our specification might be
requires: val occurs in a

effects: returns result such that a[result] = val

5.4 Specification Structure
A specification of a method consists of several clauses:

· a precondition, indicated by the keyword requires;
· a postcondition, indicated by the keyword effects;
· a frame condition, indicated by the keyword modifies.

The precondition is an obligation on the client (ie, the caller of the method). It’s a
condition over the state in which the method is invoked. If the precondition does not
hold, the implementation of the method is free to do anything (including not terminating,
throwing an exception, returning arbitrary results, making arbitrary modifications, etc).

The postcondition is an obligation on the implementor of the method. If the precondition
holds for the invoking state, the method is obliged to obey the postcondition, by returning
appropriate values, throwing specified exceptions, modifying or not modifying objects,
and so on.

The frame condition is related to the postcondition. It allows more succinct
specifications. Without a frame condition, it would be necessary to describe how all the

3

reachable objects may or may not change. But usually only some small part of the state
is modifed. The frame condition identifies which objects may be modified. If we say
modifies x, this means that the object x, which is presumed to be mutable, may be
modified, but no other object may be. So in fact, the frame condition or modifies clause
as it is sometimes called is really an assertion about the objects that are not mentioned.
For the ones that are mentioned, a mutation is possible but not necessary; for the ones
that are not mentioned, a mutation may not occur.

Omitted clauses have particular interpretations. If you omit the precondition, it is given
the default value true. That means that every invoking state satisfies it, so there is no
obligation on the caller. In this case, the method is said to be total. If the precondition is
not true, the method is said to be partial, since it only works on some states.

If you omit the frame condition, the default is modifies nothing. In other words, the
method makes no changes to any object.

Omitting the postcondition makes no sense and is never done.

5.5 Find Revisited
Roughly speaking, there are two kinds of specifications. Here is one possible
specification of find:

static int find (int [] a, int val)
requires: val occurs exactly once in a
effects: returns result such that a[result] = val

This specification is deterministic: when presented with a state satisfying the
precondition, the outcome is determined. Both findA and findB satisfy the
specification, so if this is the specification on which the clients relied, the two are
equivalent and substitutable for one another. (Of course a procedure must have the
name demanded by the specification; here we are using different names to allow us to
talk about the two versions. To use either, you'd have to change its name to find.)

Here is a slightly different specification:

static int find (int [] a, int val)
requires: val occurs in a
effects: returns result such that a[result] = val

This specification is not deterministic. Such a specification is often said to be non­
deterministic, but this is a bit misleading. Non-deterministic code is code that you expect
to sometimes behave one way and sometimes another. This can happen, for example,
with concurrency: the scheduler chooses to run threads in different orders depending on
conditions outside the program.

But a 'non-deterministic' specification doesn't call for such non-determinism in the code.
The behavior specified is not non-deterministic but under-determined. In this case, the
specification doesn't say which index is returned if val occurs more than once; it simply
says that if you look up the entry at the index given by the returned value, you'll find val.

4

This specification is again satisfied by both findA and findB, each 'resolving' the
underdeterminedness in its own way. A client of find can't predict which index will be
returned, but should not expect the behavior to be truly non-deterministic. Of course, the
specification is satisfied by a non-deterministic procedure too -- for example, one that
rather improbably tosses a coin to decide whether to start searching from the top or the
bottom of the array. But in almost all cases we'll encounter, non-determinism in
specifications offers a choice that is made by the implementor at implementation time,
and not at runtime.

So, as before, for this specification too, the two versions of find are equivalent. Finally,
here's a specification that distinguishes the two

static int find (int [] a, int val)
effects: returns largest result such that

a[result] = val or -1 if no such result

It is satisfied by findB but not findA.

5.6 Specification for a Mutating Method
Our specifications of find didn't give us the opportunity to illustrate frame conditions
and the description of side effects.

Here's a specification that describes a method that mutates an object:

class Vector {
...

boolean addAll (Vector v)
requires: v != null and v != this
modifies: this
effects: adds the elements of v to the end of this,

and returns true if this changed as a
result of call

}

We've taken this, slightly simplified, from the Java Vector class. First, look at the frame
condition: it tells us that only this is modified, so in particular the argument vector v is
not mutated -- likely to be a crucial property for most clients. Second, look at the
postcondition. It gives two constraints: the first telling us how this is modified, and the
second telling us how the return value is determined. Finally, look at the precondition. It
tells us that the behavior of the method is not constrained if you call it with a null
argument, or if you attempt to add the elements of a vector to itself. You can easily
imagine why the implementor of the method would want to impose the second
constraint: it's not likely to rule out any useful applications of the method, and it makes it
easier to implement. The specification allows a simple implementation in which you take
an element from v and add it to this, then go on to the next element of v until you get
to the end. If v and this are the same vector, this algorithm will not terminate -- an
outcome permitted by the specification.

5

5.7 Declarative Specification
Roughly speaking, there are two kinds of specifications. Operational specifications give
a series of steps that the method performs; pseudocode descriptions are operational.
Declarative specifications don’t give details of intermediate steps. Instead, they just give
properties of the final outcome, and how it’s related to the initial state.

Almost always, declarative specifications are preferable. They’re usually shorter, easier
to understand, and most importantly, they don’t expose implementation details
inadvertently that a client may rely on (and then find no longer hold when the
implementation is changed). For example, if we want to allow either implementation of
find, we would not want to say in the spec that the method ‘goes down the array until it
finds val’, since aside from being rather vague, this spec suggests that the search
proceeds from lower to higher indices and that the lowest will be returned, which
perhaps the specifier did not intend.
Here are some examples of declarative specification, starting with one from String.
The startsWith method tests whether a string starts with a particular substring:

public boolean startsWith(String prefix)
effects:

if (prefix == null) throws NullPointerException
else returns true iff there exists a sequence s such
that (prefix.seq ^ s = this.seq)

We have assumed that String objects have a specification field that models the
sequence of characters. The caret is the concatenation operator, so the postcondition
says that the method returns true if there is some suffix which, when concatenated to the
argument, gives the character sequence of the string. The absence of a modifies
clause indicates that no object is mutated. Since String is an immutable type, none of
its methods will have modifies clauses.

Another example from String:

public String substring(int i)
effects:

if i < 0 or i > length (this.seq) throws
IndexOutOfBoundsException else returns r such that
some sequence s | length(s) = i && s ^ r.seq =
this.seq

This specification shows how a rather mathematical postcondition can sometimes be
easier to understand than an informal description. Rather than talking about whether i
is the starting index, whether it comes just before the substring returned, etc, we
simply decompose the string into a prefix of length i and the returned string.

5.8 Specification Ordering
Suppose you want to substitute one method for another. How do you compare the
specifications?

A specification A is at least as strong as a specification B if

6

· A’s precondition is no stronger than B’s
· A’s postcondition is no weaker than B’s, for the states that satisfy B’s precondition.

These two rules embody several ideas. They tell you that you can always weaken the
precondition; placing fewer demands on a client will never upset him. You can always
strengthen the postcondition, which means making more promises. For example, our
method maybePrime can be replaced in any context by a method isPrime that returns
true if and only if the integer is prime. And where the precondition is false, you can do
whatever you like. If the postcondition happens to specify the outcome for a state that
violates the precondition, you can ignore it, since that outcome is not guaranteed
anyway.

These relationships between specifications will be important when we look at the
conditions under which subclassing works correctly (in our lecture on subtyping and
subclassing).

5.9 Judging Specifications
What makes a good method? Designing a method means primarily writing a
specification. There are no infallible rules, but there are some useful guidelines. About
the form of the specification: it should obviously be succinct, clear and well-structured.
The content is harder to prescribe.

The specification should be coherent: it shouldn’t have lots of different cases. Long
argument lists, deeply nested if-statements, and boolean flags are a sign of trouble.
Consider this specification:

static int minFind (int[] a, int[] b, int val)
effects: returns smallest index in arrays a and b at which

val appears

Is this a well-designed procedure? Probably not: it's incoherent, since it does two things
(finding and minimizing) that are not really related. It would be better to use two separate
procedures.

The results of a call should be informative. Consider the specification of the put method
from Java’s HashMap class:

Object put (Object key, Object val)
effects: inserts (key, val) into the mapping,

overriding any existing mapping for key, and
returns old value for key, unless none,
in which case it returns null

Note that the precondition does not rule out null values, so the hash map can store nulls.
But the postcondition uses null as a special return value for a missing key. This means
that if null is returned, you can't tell whether the key was not bound previously, or
whether it was in fact bound to null. This is not a very good design, because the return
value is useless unless you know you didn't insert nulls.

The specification should be strong enough. There’s no point throwing a checked
exception for a bad argument but allowing arbitrary mutations, because a client won’t be

7

able to determine what mutations have actually been made. Here's a specification
illustrating this flaw (and also written in an inappropriately operational style):

void addAll (Vector v)
effects: adds the elements of v to this,

unless it encounters a null element,
at which point it throws a NullPointerException

The specification should be weak enough. Consider this specification for a method that
opens a file:

static File open (String filename)

effects: opens a file named filename

This is a bad specification. It lacks important details: is the file opened for reading or
writing? Does it already exist or is it created? And it's too strong, since there's no way it
can guarantee to open a file. The process in which it runs may lack permission to open a
file, or there might be some problem with the file system beyond the control of the
program. Instead, the specification should say something much weaker: that it attempts
to open a file, and if it succeeds, the file has certain properties.

5.10 Conclusion
A specification acts as a crucial firewall between the implementor of a procedure and its
client. It makes separate development possible: the client is free to write code that uses
the procedure without seeing its source code, and the implementor is free to write the
code that implements the procedure without knowing how it will be used. Declarative
specifications are the most useful in practice. Preconditions make life hard for the client,
but, applied judiciously, are a vital tool in the software designer’s repertoire.

8

