
1

Image removed due to copyright restrictions.

Design Project Experiences:
 Space Elevator Simulator

 Part II

6.170

Page 1

1

2

•

•

.

•

•

•

Image removed due to copyright restrictions.

“Realistic” Space Elevator
Edwards & Westling, 2002

Spacecraft launched into
geosynchronous (35,000km) orbit.

Spacecraft lowers thin ribbon toward
ground, and moves outward to keep it
from falling, eventually ending up at
100,000 km to act as a counterweight

When ribbon reaches earth, it is tied to a
base station (floating platform off the
coast of Ecuador).

To strengthen and widen the initial
ribbon, climbers, powered by lasers
from earth stitch on additional ribbons
for 2½ years.

Ribbon is 3 feet wide and supports 13
tons in completed elevator.

Page 2

2

3

“
”

’
…

nd

.

Space Elevator Quotes

The space elevator will be built about 50 years
after everyone stops laughing.

- Arthur C. Clarke, 1985

"It ll be built 10 years after everybody stops
laughing and I think they have stopped
laughing," Arthur C. Clarke, 2003, 2 Annual
Space Elevator conference, New Mexico

Page 3

3

4

•

• j

–

•

•
–
–
→

Functionality

Simulate and view space elevator dynamics

Main ob ects are Central planet, cable,
counterweight, climber

Cable modeled as masses and springs

Main forces are gravitational, centrifugal and
coriolis

Different views:
Text file
Swing

 Java 3D

Because of Coriolis force, the object does not actually deviate from its
path, but it appears to do so because of the motion of the coordinate
system.

Page 4

4

5

’ j l
l

l

l j l
l

i l
l

i ld
i

l i i

MDD

Main

World

SimStruct
TimeSim

SimOut

Creation,
mutation

Displays
SimOut

Startup,
refresh

Startup,
refresh

SimOut
Viewer

Draw
(Swing)

Dynamically
updates
and reads
SimStruct

Constructor Invokes TimeSim
methods

Calls Draw methods

Calls
Draw
methods

Editor

Let s have ob ects in the World cal Draw methods and draw
themselves. This makes for a more extensible wor d because we can
add modu es and add their draw methods.

Similar y, we will have ob ects in Wor d call the simulator methods to
simu ate their dynamics.

In this MDD it is clear that World s the central module/ADT. Wor d and
Editor are tightly coupled since the Wor d will need to invoke Editor
methods to edit its objects, and the ed tor will need to invoke Wor
methods to update the objects w th new ones, or update object
positions.

Wor d objects call methods in Draw and T meS m to draw or simulate
themselves.

Page 5

5

6

•

•

’
i

l l
l i j
i l j

l
i

l
i i l

i l ldEl

 i l i

Class Hierarchy (partial)

World
module World

World
Element

abstract class

World
Structure

Array of instances of
world elements

Contains WorldStructure, Simulator

Cable Planet

Want to define new operations on all or
subset of WorldElement subclass objects

Want to define new subclasses of WorldElement

calcGrav

calcGrav calcGrav

Moon

calcGrav

calcCor

calcCor calcCor calcCor

Let s look at the class hierarchy for the viewer part of the Space
Elevator (SE) s mulator.

We have a Wor d class, a Wor dStructure class and an abstract
WorldE ement class. A World object conta ns a WorldStructure ob ect
and a S mu ator ob ect.

WorldE ements can be instantiated as planets, cables, masses, and
connectors (spr ngs).

If we want to define a new subclass of Wor dElement it is easy to do
this, and the subclass will nher t the skeletal imp ementation of the
abstract parent class.

However, defin ng a new operation for al Wor ements is harder
because we have to first provide a skeletal implementation for the
abstract class, and then provide mp ementat ons for each of the
subclasses.

Page 6

6

7

•

•

–

Visitor Design Pattern

Set up WorldElement so arbitrary operations can
be added easily

World
Element

Cable Planet

abstract class

Visitor

GravVisitor CorVisitor

abstract class

Factor out the operations in a separate hierarchy
of classes, all extending the abstract class Visitor

Each subclass represents one operation

Page 7

7

8

} }

•
•

Visitor (Calculator) Design Pattern

World
Element

Cable Planet

Visitor

GravVisitor CorVisitor

abstract class abstract class

Accept(Visitor v)

Accept(Visitor v) {
 v.VisitCable(this);

Accept(Visitor v) {
 v.VisitPlanet(this);

VisitCable(Cable c)
VisitPlanet(Planet p)

VisitCable(Cable c)

VisitPlanet(Planet p)

VisitCable(Cable c)

VisitPlanet(Planet p)

Double Dispatching
Visitor abstract class can provide skeletal
implementation for each WorldElement subclass

For example, in a cable, computing the tension in the cable. Then the
gravitational force is added to the tension by the GravVisitor subclass.

The Coriolis force is added in the CorVisitor subclass.

Page 8

8

9

…
…

j j
j) j)

(j)

j j)

j j)

j j)

Double Dispatching

WorldElement elm =
Visitor vis =

elm.Accept(vis);

cableOb .Accept(vis) PlanOb .Accept(vis)
vis.VisitCable(cableOb vis.VisitPlanet(planOb

First dispatch

GravVObj.VisitPlanet planOb

CorVOb .VisitPlanet(planOb

GravVOb .VisitCable(cableOb

CorVOb .VisitCable(cableOb

Second dispatch

Page 9

9

10

} }

•
•

Overloading

World
Element

Cable Planet

Visitor

GravVisitor CorVisitor

abstract class abstract class

Accept(Visitor v)

Accept(Visitor v) {
 v.Visit(this);

Accept(Visitor v) {
 v.Visit(this);

Visit(Cable c)
Visit(Planet p)

Visit(Cable c)

Visit(Planet p)

Visit(Cable c)

Visit(Planet p)

Just syntactic sugar
Do not use if you find it confusing!

overloading

For example, in a cable, computing the tension in the cable. Then the
gravitational force is added to the tension by the GravVisitor subclass.

The Coriolis force is added in the CorVisitor subclass.

Page 10

10

11

…
…

j j
(j) (j)

j j)

j j)

j j)

j j)

Double Dispatching with Overloading

WorldElement elm =
Visitor vis =

elm.Accept(vis);

cableOb .Accept(vis) PlanOb .Accept(vis)
vis.Visit cableOb vis.Visit planOb

First dispatch

GravVOb .Visit(planOb

CorVOb .Visit(planOb

GravVOb .Visit(cableOb

CorVOb .Visit(cableOb

Second dispatch

The Java dispatcher will do the right thing when you overload method
names. Depending on the argument type, the appropriate method will
be called.

Page 11

11

12

•

j
j

j++) {

}
}

•

–
each

Visitor Usage

In the TimeSim simulator module, we can now
write code like:

for(i = 0; i < WorldStructureOb .Elements.size(); i++) {
elm = WorldStructureOb .Elements.get(i);
for(j = 0; j < visitorsVector.size();

vis = visitorsVector.get(j);
elm.Accept(vis);

The above code does not have to change even if
we add new WorldElement subclasses or new
Visitor subclasses (operations)

Need to add visit methods for each new element in
Visitor subclass

Accept is defined appropriately for each WorldElement concrete
subclass and operation pair. It could be a no-op, that is, it may not
do anything.

Visitor makes it easy to add new operations, but it makes it harder to
add new elements. Each new element must get its VisitElement()
method in each Visitor class.

Three other points:

•	 A Visitor can visit elements that are unrelated through inheritance.
In our example Cable and Planet do not need to be related.

•	 A Visitor can accumulate state as they visit each element of an
object structure in an instance variable of the visitor. In normal
operations such state would have to be passed as arguments to the
operation.

•	 A Visitor may need access to state that otherwise may be declared
private.

Page 12

12

13

• j

Viewer Functionality

Main

World SimOut
Viewer

Draw
(Swing)

Editor

Render
(Java 3D)

The Java 3D API provides a set of ob ect­
oriented interfaces to build, render, and
control the behavior of 3D objects.

Today, we’ll look briefly at the Java 3D functionality in the simulator.

Page 13

13

14

•

• j

•
–

•
j

a
–

Java 3D API

Hierarchy of Java classes which serve as an
interface to a 3D rendering system

Geometric ob ects reside in a virtual universe

Details of rendering handled automatically
Objects rendered in parallel using Java threads

A Java 3D program creates instances of
ob ects and places them a tree structure called

scene graph
Scene graph completely specifies the contents
of the virtual universe and how it is to be
rendered

Page 14

14

15

BG BG

S

S S

TG TG

j

Java 3D Scene Graph

Appearance

Appearance Appearance

Geometry

Geometry

Virtual Universe

Locale (root)

Branch
Group

Transform
Group

Parent-child

reference

Visual ob ect

Shape3D

NodeComponent

Only a single virtual universe in a Java 3D program. Can have multiple
but they cannot communicate with each other.

Locale objects are landmarks in the Virtual Universe. Typically, there is
only one Locale object in a Virtual Universe.

Branch Group objects collect together a set of visual objects (or
Shape3D objects).

Transform Group objects specify the transformations that can be
performed on the child Shape3D objects.

The visual Shape3D object such as a cube or a sphere consists of
NodeComponent references such as Appearance and Geometry.

Each scene graph is rooted at a Locale object.

The fundamental constraint in a Java 3D scene graph is that each
Shape3D object has to have a single path to the root Locale object.

Page 15

15

16

BG

BG

S
S

TG

TG

TG

ject

ject

Scene Graph Example

Appearance
Appearance Geometry

Geometry

Locale (root)

Rotation
Rotation

Revolution

Sun Landmark

Earth
Shape3D
ob Moon

Shape3D
ob

Other planets

Here is a simple example of a scene graph representing the Moon
rotating around the Earth, and both of them rotating around their own
axes.

The Locale object represents the Sun, the reference in this virtual
universe (or solar system). Note how two successive transforms can
be applied to a Shape3D object, in this case the moon.

The entire Branch Group could be transformed through another
Transform Group (TG) to create rotation of the earth around the Sun.

Page 16

16

17

j “ ”

•
–

» /

–

•

• “ ”
–
– /

•

Pro ect Report

Significant discussions prior to coding
What should the functionality be?

Not an issue in Gizmoball AntiChess

2 Weeks of MDDs, Class Hierarchies and
Object models

About 3600 lines of code

Getting the physics right took a while
Some of the physics is still questionable
Not an issue in Gizmoball AntiChess

Lots of fun, especially because Matt and Lee
debugged my code!

Page 17

17

18

•

•

•

•

•

•

•

•

•

Nine Stages of My Design Project

Wild Euphoria.

Growing Concern.

Near Total Disillusionment.

Unmitigated Disaster.

Search For The Guilty.

Punishment Of The Innocent.

Scream for Professional Help.

Declare Victory!

Blatant Self-Promotion.

Page 18

18

19

Demonstration

Page 19

19

