
ll i i i 1

ill

Fa 2005 6.170 Laboratory n Software Eng neer ng

Usability Engineering

Prof. Rob M er
MIT EECS

1

ll i i i 2

i i ipl

l i lii

Fa 2005 6.170 Laboratory n Software Eng neer ng

Spiral Model

1. Design

2. Implement 3. Evaluate

des gn pr nc es

ow-f de ty prototypes user test ng

Recall from last lecture that the spiral model, also called iterative design, is a good way to deal with
the risk inherent in user interface design. We build room for several iterations into our design
process, and we do it by making the early iterations as cheap as possible.

Today we’re going to talk about some ideas and techniques used in user interface design: (1) design
principles that can guide your conception of a user interface; (2) low-fidelity prototyping
techniques that help you try out your design cheaply and easily; and (3) user testing to measure
whether your design is usable.

2

ll i i i 3

()

• Pl
iel i ipl

ini i ipl
l i li

•
l i i l i
l l i l in i

(i i l i)

Fa 2005 6.170 Laboratory n Software Eng neer ng

Usability Guidelines “Heuristics”

enty to choose from
– N sen’s 10 pr nc es
– Tognazz ’s 16 pr nc es
– P atform gu de nes

Uses
– He p des gners choose des gn a ternat ves
– He p eva uators f nd prob ems nterfaces

“heur st c eva uat on”

Let’s look at some design guidelines now. Usability guidelines, or heuristics, are rules that distill
out the principles of effective user interfaces. There are plenty of sets of guidelines to choose from –
sometimes it seems like every usability researcher has their own set of heuristics. Most of these
guidelines overlap in important ways, however. The experts don’t disagree about what constitutes
good UI. They just disagree about how to organize what we know into a small set of operational
rules.

For the basis of this lecture, we’ll use Jakob Nielsen’s 10 heuristics, which can be found on his web
site (reference on last slide). Another good list is Tog’s First Principles (find it in Google).

Platform-specific guidelines are also important and useful to follow. Platform guidelines tend to be
very specific, e.g. you should have a File menu, and there should be a command called Exit on it (not
Quit, not Leave, not Go Away). Following platform guidelines ensures consistency among different
applications running on the same platform, which is valuable for novice and frequent users alike.
However, platform guidelines are relatively limited in scope, offering solutions for only a few of the
design decisions in a typical UI.

Heuristics can be used in two ways: during design, to choose among different alternatives; and
during evaluation, to find and justify problems in interfaces.

3

ll i i i 4

• ie j
– i ifi i

• limi i
• All li / i l
• l isl

Fa 2005 6.170 Laboratory n Software Eng neer ng

1. Match the Real World

Use common words, not tech argon
But use doma n-spec c terms where appropr ate

Don’t put ts on user-def ned names
ow a ases synonyms n command anguages

Metaphors are usefu but may m ead

Source: Interface Hall of Shame

Let’s start by looking at each of Nielsen’s 10 heuristics in detail.

First, the system should match the real world of the user’s experience as much as possible. Nielsen’s

original name for this heuristic was “Speak the user’s language”, which is a good slogan to

remember. If the user speaks English, then the interface should also speak English, not Geekish.

Technical jargon should be avoided. Use of jargon reflects aspects of the system model creeping up

into the interface model, unnecessarily. How might a user interpret the dialog box shown here? One

poor user actually read type as a verb, and dutifully typed M-I-S-M-A-T-C-H every time this dialog

appeared. The user’s reaction makes perfect sense when you remember that most computer users do

just that, type, all day. But most programmers wouldn’t even think of reading the message that way.

Yet another example showing that You Are Not The User.

Technical jargon should only be used when it is specific to the application domain and the expected

users are domain experts. An interface designed for doctors shouldn’t dumb down medical terms.

If an interface allows users to name things, then users should be free to choose long, descriptive

names. Artificial limits on length or content should be avoided. DOS used to have a strong limit on

filenames, an 8 character name and a 3 character extension. Echoes of these limits persist in

Windows even today.

When designing an interface that requires the user to type in commands or search keywords, support

as many aliases or synonyms as you can. Different users rarely agree on the same name for an object

or command. One study found that the probability that two users would mention the same name was

only 7-18%. (Furnas et al, “The vocabulary problem in human-system communication,” CACM v30

n11, Nov. 1987).

Metaphors are one way you can bring the real world into your interface. A well-chosen, well-

executed metaphor can be quite effective and appealing, but be aware that metaphors can also

mislead. A computer interface must deviate from the metaphor at some point -- otherwise, why

aren’t you just using the physical object instead? At those deviation points, the metaphor may do

more harm than good. For example, it’s easy to say “a word processor is like a typewriter,” but you

shouldn’t really use it like a typewriter. Pressing Enter every time the cursor gets close to the right

margin, as a typewriter demands, would wreak havoc with the word processor’s automatic word-

wrapping.

4

Screenshot removed for copyright reasons.
Dialog box with text "Type mismatch."

ll i i i 5

• i ipl i
imil i ld l imil
i i ld l i

• i
i l i l i l

• ll l
Fa 2005 6.170 Laboratory n Software Eng neer ng

2. Consistency and Standards

Pr nc e of Least Surpr se
– S ar th ngs shou ook and act s ar
– D fferent th ngs shou ook d fferent

Many propert es
– Term no ogy, s ze, ocat on, co or, order, …

Fo ow p atform standards
Source: Interface Hall of Shame

The second heuristic is Consistency. This rule is often given the hifalutin’ name the Principle of
Least Surprise, which basically means that you shouldn’t surprise the user with the way a command
or interface object works. Similar things should look, and act, in similar ways. Conversely, different
things should be visibly different.

Consistency is important to lots of properties. The screenshots show three different dialog box
layouts used in Visual Basic. A consistent design would use only one.

A very important kind of consistency is in wording. Use the same terms throughout your user
interface. If your interface says “share price” in one place, “stock price” in another, and “stock
quote” in a third, users will wonder whether these are three different things you’re talking about.

Incidentally, we’ve only looked at two heuristics, but already we have a contradiction! Matching the
Real World argued for synonyms and aliases, so a command language should include not only delete
but erase and remove too. But Consistency argues for only one name for each command, or else
users will wonder whether these are three different commands that do different things. One way
around the impasse is to look at the context in which you’re applying the heuristic. When the user is
talking, the interface should make a maximum effort to understand the user, allowing synonyms and
aliases. When the interface is speaking, it should be consistent, always using the same name to
describe the same command or object. What if the interface is smart enough to adapt to the user –
should it then favor matching its output to the user’s vocabulary (and possibly the user’s
inconsistency) rather than enforcing its own consistency? Perhaps, but adaptive interfaces are still an
active area of research, and not much is known.

There are three kinds of consistency you need to worry about: internal consistency within your
application (like the VB dialog boxes shown); external consistency with other applications on the
same platform (how do other Windows apps lay out OK and Cancel?); and metaphorical
consistency with your interface metaphor or similar real-world objects.

Designs that are seriously inconsistent but provide only a tiny improvement in performance will
probably fail. The Dvorak keyboard, for example, is slightly faster than the standard QWERTY
keyboard, but not enough to overcome the power of an entrenched standard.

5

Screenshot removed for copyright reasons.

ll i i i 6

• ls
– i i i

l l i
• l li l i l

– ll i i isis
• l l

– le
– iti
– i
–
–

Fa 2005 6.170 Laboratory n Software Eng neer ng

3. Help and Documentation

Users don’t read manua
Prefer to spend t me work ng toward the r task
goa s, not earn ng about your system

But manua s and on ne he p are v ta
Usua y when user s frustrated or n cr

He p shou d be:
Searchab
Context-sens ve
Task-or ented
Concrete
Short

The next heuristic is (good) Help and Documentation. The sad fact about documentation is that most
users simply don’t read it, at least not before they try the interface. As a result, when they finally do
want to look at the manual, it’s because they’ve gotten stuck. Good help should take this into
account.

6

Screenshot of "Clippy" removed for copyright reasons.

ll i i i 7

• i
• i l l le
• All dial l l

Fa 2005 6.170 Laboratory n Software Eng neer ng

4. User Control and Freedom

Prov de undo
Long operat ons shou d be cance ab

ogs shou d have a cance button

Source: Interface Hall of Shame

This heuristic used to be called “Clearly Marked Exits” in Nielsen’s old list. Users should not be
trapped by the interface. Every dialog box should have a cancel button (where is it in this CuteFTP
dialog box?), and long operations should be interruptible.

Users should be able to explore the interface without fear of being trapped in a corner. Undo is a
great way to support exploration.

7

 Screenshot removed for copyright reasons.

ll i i i 8

• i
–
– l i i li
–
– i

• i
– i
– i

– i l
– i l

Fa 2005 6.170 Laboratory n Software Eng neer ng

5. Visibility of System Status

Keep user nformed of system state
Cursor change
Se ect on h gh ght
Status bar
Don’t overdo t…

Response t me
< 0.1 s: seems nstantaneous
0.1-1 s: user not ces, but no feedback
needed
1-5 s: d sp ay busy cursor
> 1-5 s: d sp ay progress bar

Source: Interface Hall of Shame

This heuristic used to be called, simply, “Feedback.” Keep the user informed about what’s going on.
We’ve developed lots of idioms for feedback in graphical user interfaces. Use them:

•Change the cursor to indicate possible actions (e.g. hand over a hyperlink), modes (e.g. drag/drop),

and activity (hourglass).

•Use highlights to show selected objects. Don’t leave selections implicit.

•Use the status bar for messages and progress indicators.

But don’t overdo it. This dialog box demands a click from the user. Why? Does the interface need

a pat on the back for finishing the conversion? It would be better to just skip on and show the

resulting documentation.

Depending on how long an operation takes, you may need different amounts of feedback. Even

though we say “no feedback needed” if the operation takes less than a second, remember that
something should change, visibly, within 100 ms, or perceptual fusion will be disrupted.

8

Screenshots removed for copyright reasons.

ll i i i 9

• i i
– l
– i i
– l
–
– Hi

Fa 2005 6.170 Laboratory n Software Eng neer ng

6. Flexibility and Efficiency

Prov de shortcuts for frequent operat ons
Keyboard acce erators
Command abbrev at ons
Sty es
Bookmarks

story

Source: Interface Hall of Shame

This heuristic used to be called “Shortcuts.” Frequent users need and want them.

Recently-used history is one very useful kind of shortcut, like this recently-used files menu.

9

Screenshot removed for copyright reasons.

ll i i i

• l i is l i
is i l i

• Di le ill l
• i

Fa 2005 6.170 Laboratory n Software Eng neer ng 10

7. Error Prevention

Se ect on ess error-prone than typ ng
– But th s probab y go ng overboard…

sab ega commands
Avo d modes

Source: Interface Hall of Shame

Now we get into heuristics about error handling. Since humans make errors if they’re given a
chance, the best solution is to prevent errors entirely. One way to prevent errors is to allow users to
select rather type. Misspellings then become impossible. This attitude can be taken to an extreme,
however, as shown in this example.

If a command is illegal in the current state of the interface – e.g., Copy is impossible if nothing is
selected – then the command should be disabled (“grayed out”) so that it simply can’t be selected in
the first place.

Modes are states in which the same action has different meanings. For example, when Caps Lock
mode is enabled on a keyboard, the letter keys produce uppercase letters. The text editor vi is
famous for its modes: in insert mode, letter keys are inserted into your text file, while in command
mode (the default), the letter keys invoke editing commands.

Mode errors occur when the user tries to invoke an action that doesn’t have the desired effect in the
current mode. For example, if the user means to type lowercase letters but doesn’t notice that Caps
Lock is enabled, then a mode error occurs.

There are many ways to avoid or mitigate mode errors. Eliminating the modes entirely is best,
although not always possible. When modes are necessary, it’s essential to make the mode visible.
But visibility is a much harder problem for mode status than it is for affordances. When mode errors
occur, the user isn’t actively looking for the mode, like they might actively look for a control. As a
result, mode status indicators must be visible in the user’s locus of attention. That’s why the Caps
Lock light, which displays the status of the Caps Lock mode on a keyboard, doesn’t really work.
(Raskin, The Humane Interface, 2000 has a good discussion of locus of attention as it relates to mode
visibility.)

Other solutions are spring-loaded or temporary modes. With a spring-loaded mode, the user has to do
something active to stay in the alternate mode, essentially eliminating the chance that they’ll forget
what mode they’re in. The Shift key is a spring-loaded version of the uppercase mode. Drag-and-
drop is another spring-loaded mode; you’re only dragging as long as you hold down the mouse
button. Temporary modes are similarly short-term. For example, in many graphics programs, when
you select a drawing object like a rectangle or line from the palette, that drawing mode is active only
for one mouse gesture. Once you’ve drawn one rectangle, the mode automatically reverts to ordinary
pointer selection.

10

Screenshot removed for copyright reasons.

ll i i i

• l
•
• All i i l isible

Fa 2005 6.170 Laboratory n Software Eng neer ng 11

8. Recognition, Not Recall

Use menus, not command anguages
Use combo boxes, not textboxes

needed nformat on shou d be v

Source: Interface Hall of Shame

There’s another reason why selection is better than typing – it reduces the user’s memory load.
“Minimize Memory Load” was the original name for this heuristic, and it drives much of modern
user interface design.

Norman (in The Design of Everyday Things) makes a useful distinction between knowledge in the
head, which is hard to get in there and still harder to recover, and knowledge in the world, which is
far more accessible. Knowledge in the head is what we usually think of as knowledge and memory.
Knowledge in the world, on the other hand, means not just documentation and button labels and
signs, but also nonverbal features of a system that constrain our actions or remind us of what to do.
Command languages demand lots of knowledge in the head, while menus rely on knowledge in the
world.

Any information needed by a task should be visible or otherwise accessible in the interface for that
task. The interface shouldn’t depend on users to remember the email address they want to send mail
to, or the product code for the product they want to buy.

This dialog box is a great example of overreliance on the user’s memory. It’s a modal dialog box, so
the user can’t start following its instructions until after clicking OK. But then the instructions vanish
from the screen, and the user is left to struggle to remember them. An obvious solution to this
problem would be a button that simply executes the instructions directly! This message is clearly a
last-minute patch for a usability problem.

11

Screenshot removed for copyright reasons.

ll i i i

• i i
– il il

• Gi i lp
– ix it

• li l i
– l ill l”

• Hi i l ils () il

Fa 2005 6.170 Laboratory n Software Eng neer ng 12

9. Error Reporting, Diagnosis, and Recovery

Be prec se; restate user’s nput
Not “Cannot open f e”, but “Cannot open f e named paper.doc”

ve construct ve he
why error occurred and how to f

Be po te and nonb am ng
Not “fata error”, not “ ega

de techn ca deta stack trace unt requested

Source: Interface Hall of Shame

If you can’t prevent the error, give a good error message. A good error message should (1) be
precise; (2) speak the user’s language, avoiding technical terms and details unless explicitly
requested; (3) give constructive help; and (4) be polite. The message should be worded to take as
much blame as possible away from the user and heap the blame instead on the system. Save the
user’s face; don’t worry about the computer’s. The computer doesn’t feel it, and in many cases it is
the interface’s fault anyway for not finding a way to prevent the error in the first place.

The tooltip shown here came from a production version of AutoCad! As the story goes, it was
inserted by a programmer as a joke, but somehow never removed before release.

12

Screenshot removed for copyright reasons.

ll i i i

• i
i i i

Courtesy of Tivo. Used with permission.

Fa 2005 6.170 Laboratory n Software Eng neer ng 13

10. Aesthetic and Minimalist Design

“Less s More”
– Om t extraneous nfo, graph cs, features

The final heuristic is a catch-all for a number of rules of good graphic design, which really boil down
to one word: simplicity. Leave things out unless you have good reason to include them. Don’t put
more help text on your main window than what’s really necessary. Leave out extraneous graphics.
Most important, leave out unnecessary features. If a feature is never used, there’s no reason for it to
complicate your interface.

Google and the Tivo remote offer great positive examples of the less-is-more philosophy.

13

Images removed for copyright reasons.

ll i i i

• i i
– ll l

– i i
– Ali l ibly

• i l
– l l lly

Courtesy of Microsoft Corporation. Used with permission.

Fa 2005 6.170 Laboratory n Software Eng neer ng 14

10. Aesthetic and Minimalist Design

Good graph c des gn
Few, we -chosen co ors and fonts

Group w th wh tespace
gn contro s sens

Use conc se anguage
Choose abe s carefu

Source: Interface Hall of Shame

Use few, well-chosen colors. The toolbars at the top show the difference between cluttered and

minimalist color design. The first toolbar is full of many saturated colors. It’s not only gaudy and

distracting, but actually hard to scan. The second toolbar, from Microsoft Office, uses only a handful

of colors – black, white, gray, blue, yellow. It’s muted, calming, and the few colors are used to great

effect to distinguish the icons. The whitespace separating icon groups helps a lot too.

The dialog box shows how cluttered and incomprehensible a layout can look when controls aren’t

aligned.

We’ll look at graphic design in more detail in a future lecture.

14

Three screenshots removed for copyright reasons.

ll i i i

•
l ld

i
l i

•
l

isibili
l ibili ici

•
i

iti ll
i i i

•
i ini li i

Fa 2005 6.170 Laboratory n Software Eng neer ng 15

Summarizing the Heuristics

Meet expectations
1. Match the rea wor
2. Cons stency & standards
3. He p & documentat on

User is the boss
4. User contro & freedom
5. V ty of system status
6. F ex ty & eff ency

Handle errors
7. Error prevent on
8. Recogn on, not reca
9. Error report ng, d agnos s, and recovery

Keep it simple
10. Aesthet c & m ma st des gn

Since it’s hard to learn 10 heuristics and hold them in your head when you’re trying to design, I find

it useful to categorize Nielsen’s heuristics still further.

Meet expectations. The first three heuristics concern how well the interface fits its environment, its

task, and its users: speaking the user’s language, keeping consistent with itself and other applications,

and satisfying the expectation of help when it’s needed.

User is the boss. The next three heuristics are related in that the interface should serve the user,

rather than the other way around. Don’t push the boss into the corner, keep the boss aware of things,

and make the boss productive and efficient.

Handle errors. The next three heuristics largely concern errors, which are part and parcel of

human-computer interaction: prevent them as much as possible, don’t rely on human memory, but

when errors are unavoidable, report them properly.

Aesthetic & minimal design stays in its own category, as befits its overwhelming importance. Keep

it simple.

15

ll i i i

i i ipl

l i lii

Fa 2005 6.170 Laboratory n Software Eng neer ng 16

Outline

1. Design

2. Implement 3. Evaluate

des gn pr nc es

ow-f de ty prototypes user test ng

So we’ve talked about design principles, and you’ve developed a design. Now let’s think about how
to implement it cheaply.

16

ll i i i

• i i l
– i ial i
– l i l

• i i le
– i i i l

•
– i i ial
– Si l i

pi iti

Fa 2005 6.170 Laboratory n Software Eng neer ng 17

Low-fidelity Prototypes

Paper s the fastest prototyp ng too
Sketch w ndows, menus, d ogs, w dgets
Crank out ots of des gns and eva uate them

Hand-sketch ng s OK – even preferab
Focus on behav or & nteract on, not fonts & co ors

Paper prototypes can even be executed
Use p eces to represent w ndows, d ogs, menus

mu ate the computer’s responses by mov ng
eces around and wr ng on them

It turns out that paper is a terrific prototyping tool. If you sit down and write Java code for your UI
without having drawn a sketch first, you’re letting Java design the UI for you. Always sketch it on
paper first.
Hand sketching is valuable because it focuses attention on the issues that matter in early design
without distracting anybody with details. When you’re sketching by hand, you aren’t bothered with
details like font, color, alignment, whitespace, etc. In a drawing program, you would be faced with
all these decisions, and you might spend a lot of time on them – time that would clearly be wasted if
you have to throw away this design. Hand sketching also improves the feedback you get when you
show your design to other people. They’re less likely to nitpick about details that aren’t relevant at
this stage. They won’t complain about the color scheme if there isn’t one. More important,
however, a hand-sketched design seems less finished, less set in stone, and more open to suggestions
and improvements. Architects have known about this phenomenon for many years. If they show
clean CAD drawings to their clients in the early design discussions, the clients are less able to discuss
needs and requirements that may require radical changes in the design. In fact, many CAD tools
have an option for rendering drawings with a “sketchy” look for precisely this reason.

It turns out that paper designs can even be executed. A paper prototype is a physical mockup of the
interface, mostly made of paper. It’s usually hand-sketched on mutiple pieces, with different pieces
showing different menus, dialog boxes, or window elements. A paper prototype can be brought to
life by a person who simulates what the computer would do in response to a user’s “clicks” and
“keystrokes”, by rearranging pieces, writing custom responses, and occasionally announcing some
effects verbally that are too hard to show on paper. Because a paper prototype is actually interactive,
you can actually user-test it: give users a task to do and watch how they do it.

17

ll i i iFa 2005 6.170 Laboratory n Software Eng neer ng 18

Paper Prototypes

Here are some of the prototypes made in the user interfaces course (6.831).

This prototype is big, dark, and easy to read. Markers are better than pencil. (Whiteout and
correction tape can fix mistakes as well as erasers can!) Color is also neat, but don’t bother unless
color is a design decision that needs to be tested, as it is in this prototype. If color doesn’t really
matter, monochromatic prototypes work just as well.

18

Photo of paper UI design removed for copyright reasons.

ll i i iFa 2005 6.170 Laboratory n Software Eng neer ng 19

Paper Prototypes

Should a paper prototype be hand-sketched or computer-drawn? Generally hand-sketching is better
in early design, but sometimes realistic images can be constructive additions. This prototype is an
interface designed to integrate into a web browser. Actual screenshots of web pages are used, mainly
as props, to make the prototype more concrete and help the user visualize the interface better. Since
web page layout isn’t the problem the interface is trying to solve, there’s no reason to hand-sketch a
web page.

19

Photo removed for copyright reasons.

ll i i iFa 2005 6.170 Laboratory n Software Eng neer ng 20

Paper Prototypes

This prototype has lots of little pieces that have trouble staying put. Post-it Note glue can help with
that – it actually comes in a glue stick that you can apply to any piece of paper to make it sticky but
removable.

But many of these little pieces could be eliminated simply by writing the messages on the fly, while
you’re running the prototype. You don’t have to have a little prepared piece for every possible item
the computer could display; just write them on the “screen” when you need them.

20

Photo removed for copyright reasons.

ll i i i

• i
• i i

ivial
i i l
is l i i

• Fi i
i i i l

• i

Fa 2005 6.170 Laboratory n Software Eng neer ng 21

User Testing

Start w th a prototype
Wr te up a few representat ve tasks
– Short, but not tr
– e.g.: “add th s meet ng to ca endar”,

“type th etter and pr nt t”

nd a few representat ve users
– 3 s often enough to f nd obv ous prob ems

Watch them do tasks w th the prototype

User testing is the gold standard for evaluating a user interface. Since it’s hard to predict how a
typical user will respond to an interface, the best way to learn is to actually find some typical users,
put them in front of your interface, and watch what happens.

You don’t need to have a finished implementation to do user testing. A paper prototype is enough to
test, and it’s so easy to build (relative to code) that paper prototypes are often the first version of your
interface that you test on users.

A good user test shouldn’t be undirected. Don’t just plop a user down and say “try this interface”.
You should prepare some representative tasks that are appropriate to your interface. Pick tasks that
are common, tasks that should be easy, and tasks that you’re worried may be hard. Make the tasks
short (if possible), but not trivial. Make each task concrete (e.g., “schedule a meeting for 3pm this
Wednesday”), but don’t provide specific instructions on how to do it.

Once you have your tasks, find some users that are representative of your target user population.
Needless to say, don’t use people from the development team, even if they happen to fall in the target
user population. They know too much about the underlying system, so they’re not typical users. A
handful of users is usually enough for feedback about obvious usability problems. (If you wanted to
measure some quantitative improvement due to your design, however, you’d need many more users,
and you’d need to carefully design the testing.)

21

ll i i i

• i i (i i l)
– i i
– l i l
– l i i
– i l i i

• i l
• i

– l lai i i
– Si if i l
– i i l (

i i
• l

Fa 2005 6.170 Laboratory n Software Eng neer ng 22

How to Watch Users

Br ef the user f rst be ng a test user s stressfu
“I’m test ng the system, not test ng you”
“If you have troub e, t’s the system’s fau t”
“Fee free to qu t at any t me”
Eth ca ssues: nformed consent

Ask user to th nk a oud
Be qu et!

Don’t he p, don’t exp n, don’t po nt out m stakes
t on your hands t he ps

Two except ons: prod user to th nk a oud “what are you
th nk ng now?”), and move on to next task when stuck

Take ots of notes

Once you have your tasks and your users, the final step is simple: watch what happens. This is harder than it sounds.
First, being a test user is stressful for most people. There’s a tendency to feel like a subject of an intelligence test. If they
can’t figure out how to use your interface, they may feel like they’ve failed. You need to be aware of this phenomenon, and
take steps in advance to ward it off. When you brief a user before a test, make very clear that the goal of the test is to
uncover problems in the computer program. Anything that goes wrong is the interface’s fault, not the user’s. Assure
them that they can quit the test at any time.
User studies conducted in connection with MIT research should also be cognizant of the ethical issues surrounding use of
human subjects. MIT policies treat the user of humans in software user studies identically with their use in psychology
experiments, drug trials, and studies of new medical procedures. You have to obtain approval for a research user study
from MIT’s Committee on the Use of Humans as Experimental Subjects (COUHES).
While the user is actually using your interface, encourage them to think aloud: verbalize what they’re thinking as they use
the interface. Encourage them to say things like “OK, now I’m looking for the place to set the font size, usually it’s on the
toolbar, nope, hmm, maybe the Format menu…” Thinking aloud gives you (the observer) a window into their thought
processes, so you can understand what they’re trying to do and what they expect. Thinking aloud can be hard to do,
particularly when the user gets absorbed in the task. Sometimes you have to nudge the user a little: “what are you thinking
now?” “Why did you look there?”
While the user is talking, you, as the observer, should be doing the opposite: keeping quiet. Don’t offer any help, don’t
attempt to explain the interface. Just sit on your hands, bite your tongue, and watch. You’re trying to get a glimpse of how
a typical user will interact with the interface. Since a typical user won’t have the system’s designer sitting next to them,
you have to minimize your effect on the situation. It may be very hard for you to sit and watch someone struggle with a
task, when the solution seems so obvious to you, but that’s how you learn the usability problems in your interface.
You have only two excuses for opening your mouth during a user test: first, to prod the user to think aloud, and second, to
move the user along to another task if they really get stuck.
Keep yourself busy by taking a lot of notes.

22

ll i i i

• iti l i i ly
i i

• ll i

• l iti
l

Fa 2005 6.170 Laboratory n Software Eng neer ng 23

Watch for Critical Incidents

Cr ca nc dents: events that strong
affect task performance or sat sfact on
Usua y negat ve
– Errors
– Repeated attempts
– Curses

Can a so be pos ve
– “Coo !”
– “Oh, now I see.”

What should you take notes about? As much as you can, but focus particularly on critical incidents,
which are moments that strongly affect usability, either in task performance (efficiency or error rate)
or in the user’s satisfaction. Most critical incidents are negative. Pressing the wrong button is a
critical incident. So is repeatedly trying the same feature to accomplish a task. Users may draw
attention to the critical incidents with their think-aloud, with comments like “why did it do that?” or
“@%!@#$!” Critical incidents can also be positive, of course. You should note down these pleasant
surprises too.

Critical incidents give you a list of potential usability problems that you should focus on in the next
round of iterative design.

23

ll i i i

•
• iliti i

i ipl i i
• i
•
• l i

Fa 2005 6.170 Laboratory n Software Eng neer ng 24

Summary

You are not the user
Keep human capab es and des gn
pr nc es n m nd
Iterate over your des gn
Make cheap, throw-away prototypes
Eva uate them w th users

24

ll i i i

• l ili
– l

l i
– i i l
– Hi l i il

• i li i
– i i i i il

• ili i i
– Niel i i l i

// i / / i ic/
– ini i i ipl

// / i /fi i ipl l

Fa 2005 6.170 Laboratory n Software Eng neer ng 25

Further Reading

Genera books on usab ty
Johnson. GUI B oopers: Don’ts and Dos for Software
Deve opers and Web Des gners, Morgan Kaufmann, 2000.
Jef Rask n, The Humane Interface, Add son-Wes ey 2000.

x & Hartson, Deve op ng User Interfaces, W ey 1995.

Low-f de ty prototyp ng
Rett g, “Prototyp ng for T ny F ngers”, CACM Apr 1994.

Usab ty heur st cs
sen, “Heur st c Eva uat on.”

http: www.use t.com papers heur st
Tognazz , “F rst Pr nc es.”
http: www.asktog.com bas cs rstPr nc es.htm

25

