
ll i i i 1 

ill

Fa 2005 6.170 Laboratory n Software Eng neer ng 

Usability 

Prof. Rob M er 
MIT EECS 

1




ll i i i 2Fa 2005 6.170 Laboratory n Software Eng neer ng 

User Interface Hall of Shame 

Source: Interface Hall of Shame 

Usability is about creating effective user interfaces (UIs). Slapping a pretty window interface on a program 
does not automatically confer usability on it. This example shows why. This dialog box, which appeared in a 
program that prints custom award certificates, presents the task of selecting a template for the certificate. 

This interface is clearly graphical. It’s mouse-driven – no memorizing or typing complicated commands. It’s 
even what-you-see-is-what-you-get (WYSIWYG) – the user gets a preview of the award that will be created. 
So why isn’t it usable? 

The first clue that there might be a problem here is the long help message on the left side. Why so much help 
for a simple selection task? Because the interface is bizarre! The scrollbar is used to select an award 
template. Each position on the scrollbar represents a template, and moving the scrollbar back and forth 
changes the template shown. 

This is a cute but bad use of a scrollbar. Notice that the scrollbar doesn’t have any marks on it. How many 
templates are there? How are they sorted? How far do you have to move the scrollbar to select the next one? 
You can’t even guess from this interface. 

2 

Screenshot removed for copyright reasons.



ll i i i 3Fa 2005 6.170 Laboratory n Software Eng neer ng 

User Interface Hall of Shame 

Source: Interface Hall of Shame 

Normally, a horizontal scrollbar underneath an image (or document, or some other content) is designed for 
scrolling the content horizontally. A new or infrequent user looking at the window sees the scrollbar, assumes 
it serves that function, and ignores it. Inconsistency with prior experience and other applications tends to trip 
up new or infrequent users. 

Another way to put it is that the horizontal scrollbar is an affordance for continuous scrolling, not for discrete 
selection. We see affordances out in the real world, too; a door knob says “turn me”, a handle says “pull me”. 
We’ve all seen those apparently-pullable door handles with a little sign that says “Push”; and many of us have 
had the embarrassing experience of trying to pull on the door before we notice the sign. The help text on this 
dialog box is filling the same role here. 

But the dialog doesn’t get any better for frequent users, either. If a frequent user wants a template they’ve 
used before, how can they find it? Surely they’ll remember that it’s 56% of the way along the scrollbar? This 
interface provides no shortcuts for frequent users. In fact, this interface takes what should be a random access 
process and transforms it into a linear process. Every user has to look through all the choices, even if they 
already know which one they want. The computer scientist in you should cringe at that algorithm. 

Even the help text has usability problems. “Press OKAY”? Where is that? And why does the message have a 
ragged left margin? You don’t see ragged left too often in newspapers and magazine layout, and there’s a 
good reason. 

On the plus side, the designer of this dialog box at least recognized that there was a problem – hence the help 
message. But the help message is indicative of a flawed approach to usability. Usability can’t be left until the 
end of software development, like package artwork or an installer. It can’t be patched here and there with 
extra messages or more documentation. It must be part of the process, so that usability bugs can be fixed, 
instead of merely patched. 

How could this dialog box be redesigned to solve some of these problems? 

3 

Screenshot removed for copyright reasons.



ll i i i 4Fa 2005 6.170 Laboratory n Software Eng neer ng 

Redesigning the Interface 

Source: Interface Hall of Shame 

Here’s one way it might be redesigned. The templates now fill a list box on the left; selecting a 
template shows its preview on the right. This interface suffers from none of the problems of its 
predecessor: list boxes clearly afford selection to new or infrequent users; random access is trivial for 
frequent users. And no help message is needed. 

4 

Screenshot removed for copyright reasons.



ll i i i 5Fa 2005 6.170 Laboratory n Software Eng neer ng 

Another for the Hall of Shame 

Source: Interface Hall of Shame 

Here’s another bizarre interface, taken from a program that launches housekeeping tasks at scheduled 
intervals. The date and time look like editable fields (affordance!), but you can’t edit them with the 
keyboard. Instead, if you want to change the time, you have to click on the Set Time button to bring 
up a dialog box. 

This dialog box displays time differently, using 12-hour time (7:17 pm) where the original dialog 
used 24-hour time (consistency!). Just to increase the confusion, it also adds a third representation, an 
analog clock face. 

So how is the time actually changed? By clicking mouse buttons: clicking the left mouse button 
increases the minute by 1 (wrapping around from 59 to 0), and clicking the right mouse button 
increases the hour. Sound familiar? This designer has managed to turn a sophisticated graphical 
user interface, full of windows, buttons, and widgets, and controlled by a hundred-key keyboard and 
two-button mouse, into a clock radio! 
Perhaps the worst part of this example is that it’s not a result of laziness. Somebody went to a lot of 
effort to draw that clock face with hands. If only they’d spent some of that time thinking about 
usability instead. 

5 

Screenshot removed for copyright reasons.



ll i i i 6Fa 2005 6.170 Laboratory n Software Eng neer ng 

Hall of Fame or Hall of Shame? 

Gimp is an open-source image editing program, comparable to Adobe Photoshop. Gimp’s designers 
made a strange choice for its menus. Gimp windows have no menu bar. Instead, all Gimp menus are 
accessed from a context menu, which pops up on right-click. 

This is certainly inconsistent with other applications, and new users are likely to stumble trying to 
find, for example, the File menu, which never appears on a context menu in other applications. (I 
certainly stumbled as a new user of Gimp.) But Gimp’s designers were probably thinking about 
expert users when they made this decision. A context menu should be faster to invoke, since you 
don’t have to move the mouse up to the menu bar. A context menu can be popped up anywhere. So 
it should be faster. Right? 

Wrong. With Gimp’s design, as soon as the mouse hovers over a choice on the context menu (like 
File or Edit), the submenu immediately pops up to the right. That means, if I want to reach an option 
on the File menu, I have to move my mouse carefully to the right, staying within the File choice, 
until it reaches the File submenu. If my mouse ever strays into the Edit item, the File menu I’m 
aiming for vanishes, replaced by the Edit menu. So if I want to select File/Quit, I can’t just drag my 
mouse in a straight line from File to Quit – I have to drive into the File menu, turn 90 degrees and 
then drive down to Quit! Cascading submenus are actually slower to use than a menu bar. 

Gimp’s designers made a choice without fully considering how it interacted with human capabilities. 

6 

Screenshot removed for copyright reasons.



7

Fall 2005 6.170 Laboratory in Software Engineering 7

Hall of Shame or Hall of Fame?

Finally, we have the much-reviled Paperclip.

Clippy was a well-intentioned effort to solve a real usability problem.  Users don’t read the manual, 
don’t use the online help, and don’t know how to find the answers to their problems.  Clippy tries to 
suggest answers to the problem it thinks you’re having.

Unfortunately it’s often wrong, often intrusive, and often annoying.  The subjective quality of your 
interface matters too.

 

Screenshot removed for copyright reasons.



ll i i i 8 

• i l
i

l ll
l i

• i i i icial 
l l ili

l i isi
al

Fa 2005 6.170 Laboratory n Software Eng neer ng 

The User Interface Is Important 

User nterface strong y affects 
percept on of software 
– Usab e software se s better 
– Unusab e web s tes are abandoned 

Percept on s somet mes superf
– Users b ame themse ves for UI fa ngs 
– Peop e who make buy ng dec ons are not 

ways end-users 

So what? Why should we care about usability? After all, human beings are capable of extraordinary 
learning and adaptation. Even the worst interface can be fixed by a man page, right? 

Putting aside the essential inhumanity of this position, there are some practical reasons why we 
should care about the user interfaces of our software. Usability strongly affects how software is 
perceived, because the user interface is the means by which the software presents itself to the world. 
“Ease of use” ratings appear in magazine reviews, affect word-of-mouth recommendations, and 
influence buying decisions. Usable software sells. Conversely, unusable software doesn’t sell. If a 
web site is so unusable that shoppers can’t find what they want, or can’t make it through the 
checkout process, then they will go somewhere else. 

Unfortunately, a user’s perception of software usability is often superficial. An attractive user 
interface may seem “user friendly” even if it’s not really usable. Part of that is because users often 
blame themselves for errors they make, even if the errors could have been prevented by better 
interface design. (“Oops, I missed the File menu again! How stupid of me.”) So usability is a little 
different from other important attributes of software, like reliability, performance, or security. If the 
program is slow, or crashes, or gets hacked, we know who to blame. If it’s unusable, but not fatally 
so, the usability problems may go unreported. 

8 



ll i i i 9 

• 
i i i

i i i
i i i i

• i l i
i l lt 

• i l i
i

Fa 2005 6.170 Laboratory n Software Eng neer ng 

User Interfaces Are Hard to Design 

You are not the user 
– Most software eng neer ng s about 

commun cat ng w th other programmers 
– UI s about commun cat ng w th users 

The user s a ways r ght 
– Cons stent prob ems are the system’s fau

…but the user s not a ways r ght 
– Users aren’t des gners 

Unfortunately, user interfaces are not easy to design. You (the developer) are not a typical user. You 
know far more about your application than any user will. You can try to imagine being your mother, 
or your grandma, but it doesn’t help much. It’s very hard to forget things you know. 

This is how usability is different from everything else you learn about software engineering. 
Specifications, assertions, and object models are all about communicating with other programmers, 
who are probably a lot like us. Usability is about communicating with other users, who are probably 
not like us. 

The user is always right. Don’t blame the user for what goes wrong. If users consistently make 
mistakes with some part of your interface, take it as a sign that your interface is wrong, not that the 
users are dumb. This lesson can be very hard for a software designer to swallow! 

Unfortunately, the user is not always right. Users aren’t oracles. They don’t always know what they 
want, or what would help them. In a study conducted in the 1950s, people were asked whether they 
would prefer lighter telephone handsets, and on average, they said they were happy with the handsets 
they had (which at the time were made rather heavy for durability). Yet an actual test of telephone 
handsets, identical except for weight, revealed that people preferred the handsets that were about half 
the weight that was normal at the time. (Klemmer, Ergonomics, Ablex, 1989, pp 197-201). 

Users aren’t designers, either, and shouldn’t be forced to fill that role. It’s easy to say, “Yeah, the 
interface is bad, but users can customize it however they want it.” There are two problems with this 
statement: (1) most users don’t, and (2) user customizations may be even worse! One study of 
command abbreviations found that users made twice as many errors with their own command 
abbreviations than with a carefully-designed set (Grudin & Barnard, “When does an abbreviation 
become a word?”, CHI ’85). So customization isn’t the silver bullet. 

9 



ll i i i

• l i i i

• i l
i l isibl

Fa 2005 6.170 Laboratory n Software Eng neer ng 10 

Iterative Design 

UI deve opment s an terat ve process 

Do you want the des gn cyc e to be 
nterna , or v e to your customers? 

Design 

Implement Evaluate 

So user interface development is inherently risky. We don’t (yet) have an easy way to predict

whether a UI design will succeed.


Iterative design offers a way to manage the inherent risk in user interface design. In iterative

design, the software is refined by repeated trips around a design cycle: first imagining it (design),

then realizing it physically (implementation), then testing it (evaluation).


Unfortunately, many commercial UI projects inflict iterative design on their paying customers. They

design a bad user interface, implement it, and release it. Evaluation then takes place in the

marketplace, as hapless customers buy their product and complain about it. Then they iterate the

design process on version 2.


On the other hand, if you keep all your design iterations in-house, you may never release anything!

It’s very costly to do every iteration of a design with a high-quality implementation in a language

like Java or C++ -- especially if you discover you have to throw away all that code because the

design was bad.


10 



ll i i i

• 
l i ly i i

Fa 2005 6.170 Laboratory n Software Eng neer ng 11 

Spiral Model 

Use throw-away prototypes and cheap 
eva uat on for ear terat ons 

Design 

Implement Evaluate 

The spiral model offers a way out of the dilemma. We build room for several iterations into our 
design process, and we do it by making the early iterations as cheap as possible. 

The radial dimension of the spiral model corresponds to the cost of the iteration step – or, 
equivalently, its fidelity or accuracy. For example, an early implementation might be a paper sketch 
or mockup. It’s low-fidelity, only a pale shadow of what it would look and behave like as interactive 
software. But it’s incredibly cheap to make, and we can evaluate it by showing it to users and asking 
them questions about it. 

11 



ll i i i

• ili ll 
i li

• Di i ili
ili is i l

ici l is i
ili is i

l
l

i i is i j l

Fa 2005 6.170 Laboratory n Software Eng neer ng 12 

Usability Defined 

Usab ty: how we users can use the 
system’s funct ona ty 

mens ons of usab ty 
– Learnab ty: t easy to earn? 
– Eff ency: once earned, t fast to use? 
– Memorab ty: t easy to remember what 

you earned? 
– Errors: are errors few and recoverab e? 
– Sat sfact on: t en oyab e to use? 

The property we’re concerned with here, usability, is more precise than just how “good” the system 
is. A system can be good or bad in many ways. If important requirements are unsatisfied by the 
system, that’s probably a deficiency in functionality, not in usability. If the system is very expensive 
or crashes frequently, those problems certainly detract from the user’s experience, but we don’t need 
user testing to tell us that. 

More narrowly defined, usability measures how well users can use the system’s functionality. 
Usability has several dimensions: learnability, efficiency, memorability, error rate/severity, and 
subjective satisfaction. 

Notice that we can quantify all these measures of usability. Just as we can say algorithm X is faster 
than algorithm Y on some workload, we can say that interface X is more learnable, or more efficient, 
or more memorable than interface Y for some set of tasks and some class of users. 

12 



ll i i i

• iliti
i
ills 

l isi

• i ili i i

Fa 2005 6.170 Laboratory n Software Eng neer ng 13 

Outline 

Rest of today: human capab es 
– Percept on 
– Motor sk
– Memory 
– Co or v on 

Next t me: usab ty eng neer ng 

13




ll i i i

P c tual 

Proc r 

Cog tive 

Proc r 

Motor 

Proc r 
Mu l

Lo m 

M ry 

rki

M ry 

F back 

~10

cycle ti

~7 ~7

hu

~1 d ay 
limi i

sl

Fa 2005 6.170 Laboratory n Software Eng neer ng 14 

Human Information Processing 

Senses 
erep

esso

ni

esso esso
sces 

ng-ter

emo

Wo ng 

emo

eed

0ms 

me 

0ms 0ms 

7 ± 2 —c nks“ 

0s ec
un ted s ze 

ow decay 

Just as it helps to understand the properties of the computer system you’re programming for – its processor speed, memory 
size, hard disk, operating system, and the interaction between these components – it’s important for us to understand some 
of the properties of the human that we’re designing for. Needless to say, there’s far more to this topic than we can cover 
in one lecture, so we’ll just hit some highlights that are particularly worth knowing when you’re designing a user interface. 
Here’s a simple abstraction of the human cognitive system. Just as a computer has memory and processor, so does our 
model of a human. Actually, the model has several different kinds of memory, and several different processors. 
The perceptual processor takes the sensory input and attempts to recognize things in it: letters, words, phonemes, icons, 
faces, etc. 
The cognitive processor makes comparisons and decisions. The cognitive processor does most of the work that we think 
of as “thinking”. 
The motor processor receives an action from the cognitive processor and instructs the muscles to execute it. There’s an 
implicit feedback loop here: the effect of the action (either on the position of your body or on the state of the world) can be 
observed by your senses, and used to correct the motion in a continuous process. 
The model has two memories: a working memory, which is small and short-lived, and long-term memory, which is huge 
and shows little decay. 
Note that this model isn’t meant to reflect the anatomy of your nervous system. There probably isn’t a single area in your 
brain corresponding to the perceptual processor, for example. But it’s a useful abstraction nevertheless. One reason it’s 
useful is that we can assign numerical parameters to its components, to derive rough-and-ready estimates of how a user 
might behave. 

14 



ll i i i

• i li wi i l
l (TP ) 

• 
/ i i

i i
ls 

i
li i ly i l i

Fa 2005 6.170 Laboratory n Software Eng neer ng 15 

Perceptual Fusion 

Two st mu th n the same cyc e of the 
perceptua processor ~100ms
appear fused 
Consequences 
– 10 frames sec s enough to perce ve a 

mov ng p cture 
– Computer response < 100 ms fee

nstantaneous 
– Causa ty s strong nf uenced by fus on 

One interesting effect of the cycle time of the perceptual processor is perceptual fusion. Here’s an 
intuition for how fusion works. Every cycle, the perceptual processor grabs a frame (snaps a 
picture). Two events occurring less than the cycle time apart are likely to appear in the same frame. 
If the events are similar – e.g., Mickey Mouse appearing in one position, and then a short time later 
in another position – then the events tend to fuse into a single perceived event – a single Mickey 
Mouse, in motion. 

Perceptual fusion is responsible for the way we perceive a sequence of movie frames as a moving 
picture, so the parameters of the perceptual processor give us a lower bound on the frame rate for 
believable animation. 10 frames per second is good enough, but 20 frames per second is better (Tp 
may be as fast as 50 ms for the quickest humans and for the most favorable conditions). 

Perceptual fusion also gives an upper bound on good computer response time. If a computer 
responds to a user’s action within Tp time, its response feels instantaneous with the action itself. 
Systems with that kind of response time tend to feel like extensions of the user’s body. If you used a 
text editor that took longer than Tp response time to display each keystroke, you would notice. 

Fusion also strongly affects our perception of causality. If one event is closely followed by another – 
e.g., pressing a key and seeing a change in the screen – and the interval separating the events is less 
than T , then we are more inclined to believe that the first event caused the second. p

15 



ll i i i

• l l 
– i lf 
– l i i m 

• Cl l l 
– l ( i ld) 

i i i lt 
– l i i p c m 

Fa 2005 6.170 Laboratory n Software Eng neer ng 16 

Motor Processing 

Open- oop contro
Motor processor runs a program by tse
cyc e t me s T ~ 70 ms 

osed­oop contro
Musc e movements or the r effect on the wor
are perce ved and compared w th des red resu
cyc e t me s T + T + T ~ 240 ms 

The motor processor can operate in two ways. It can run autonomously, repeatedly issuing the same 
instructions to the muscles. This is “open-loop” control; the motor processor receives no feedback 
from the perceptual system about whether its instructions are correct. With open loop control, the 
maximum rate of operation is just T .m

The other way is “closed-loop” control, which has a complete feedback loop. The perceptual system 
looks at what the motor processor did, and the cognitive system makes a decision about how to 
correct the movement, and then the motor system issues a new instruction. At best, the feedback 
loop needs one cycle of each processor to run, or Tp + T + T ~ 240 ms. c m 

Here’s a simple but interesting experiment that you can try: take a sheet of lined paper and scribble a 
sawtooth wave back and forth between two lines, going as fast as you can but trying to hit the lines 
exactly on every peak and trough. Do it for 5 seconds. The frequency of the sawtooth carrier wave 
is dictated by open-loop control, so you can use it to derive your Tm. The frequency of the wave’s 
envelope, the corrections you had to make to get your scribble back to the lines, is closed-loop 
control. You can use that to derive your value of Tp + T .c

16 



ll i i i

• l i

i
i i
i

D 

S 

Fa 2005 6.170 Laboratory n Software Eng neer ng 17 

Pointing Tasks: Fitts’s Law 

How ong does t take to reach a target? 

– Mov ng mouse to target on screen 
– Mov ng f nger to key on keyboard 
– Mov ng hand between keyboard and 

mouse 

Let’s consider a common motor task in user interfaces: pointing at a target of a certain size at a 
certain distance away (within arm’s length, of course). The time it takes to do this task is governed 
by a relationship called Fitts’s Law. It’s a fundamental law of the human sensory-motor system, 
which has been replicated by numerous studies. Fitts’s Law applies equally well to using a mouse to 
point at a target on a screen, putting your finger on a keyboard key, or moving your hand between 
keyboard and mouse. 

17 



ll i i i

• i i l
l l 

• l ini i
wi �D 

iti l i

Ti Ti

Fa 2005 6.170 Laboratory n Software Eng neer ng 18 

Analytical Derivation of Fitts’s Law 

Mov ng your hand to a target s c osed­
oop contro
Each cyc e covers rema ng d stance D 

th error 

Pos on Ve oc ty 

me me 

We can derive Fitts’s Law by appealing to the human information processing model. Fitts’s Law 
relies on closed-loop control. In each cycle, your motor system instructs your hand to move the 
entire remaining distance D. The accuracy of that motion is proportional to the distance moved, so 
your hand gets within some error �D of the target (possibly undershooting, possibly overshooting). 
Your perceptual and cognitive processors perceive where your hand arrived and compare it to the 
target, and then your motor system issues a correction to move the remaining distance �D – which it 
does, but again with proportional error, so your hand is now within �2D. This process repeats, with 
the error decreasing geometrically, until n iterations have brought your hand within the target œ i.e., 
�nD � S. Solving for n, and letting the total time T = n (Tp + T + T ), we get: c m

T = a + b log (D/S) 

where a is the reaction time for getting your hand moving, and b = - (Tp + T + T )/log �.c m

The graphs above show the typical trajectory of a person’s hand, demonstrating this correction cycle 
in action. The position-time graph shows an alternating sequence of movements and plateaus; each 
one corresponds to one cycle. The velocity-time graph shows the same effect, and emphasizes that 
hand velocity of each subsequent cycle is smaller, since the motor processor must achieve more 
precision on each iteration. 

18 



ll i i i

• l (D/S) 

• l (D/S) i i i i l
i i

D 

S 

Fa 2005 6.170 Laboratory n Software Eng neer ng 19 

Fitts’s Law 

T = RT + MT = a + b og 

og s the ndex of d ff cu ty of the 
po nt ng task 

Fitts’s Law has some interesting implications. The edge of the screen stops the mouse pointer, so 
you don’t need a correcting cycle to hit it. Essentially, the edge of the screen acts like a target with 
infinite size. So edge-of-screen real estate is precious. The Macintosh menu bar, positioned at the 
top of the screen, is faster to use than a Windows menu bar (which, even when a window is 
maximized, is displaced by the title bar). 

So if you put controls at the edges of the screen, they should be active all the way to the edge to take 
advantage of this effect. Don’t put an unclickable margin beside them. 

19 



ll i i i

• Fi li ly i
is 

• i i is 
i l 

• is i i l

D 
S (D/S) 

Fa 2005 6.170 Laboratory n Software Eng neer ng 20 

Path Steering Tasks 

tts’s Law app es on f path to target 
unconstrained 

But the task s much harder f path 
constra ned to a tunne

Th s why cascad ng menus are s ow! 

T = a + b 

We can also see why cascading submenus like Gimp’s are hard to use, because of the correction 
cycles the user is forced to spend getting the mouse pointer carefully over into the submenu. Because 
the user must keep the mouse inside the menu tunnel, they must move it slowly enough so that the 
error of each cycle (�d where d is the distance moved in that cycle) is always less than S. Thus the 
distance of each cycle is d<= S/�, and so the total number of cycles is proportional to D/S. That’s a 
lot slower than the log(D/S) in Fitts’s Law, which applies to unconstrained pointing – it’s 
exponentially slower! 

Gimp offers the worst possible behavior here, by making the submenu disappear as soon as the 
mouse pointer exits the tunnel. Microsoft Windows does it a little better – you have to hover over a 
choice for about half a second before the submenu appears, so if you veer off course briefly, you 
won’t lose your target. But now we know a reason that this solution isn’t ideal: it exceeds Tp, so it 
destroys perceptual fusion and our sense of causality. And you still have to make that right-angle turn 
to get into the menu. 

Apple Macintosh does even better: when a submenu opens, there’s a triangular zone, spreading from 
the mouse to the submenu, in which the mouse pointer can move without losing the submenu. The 
user can point straight to the submenu without unusual corrections, and without even noticing that 
there might be a problem. 

20 



ll i i i

• i
ll — “ 

li
i l 

( i ) 

• 
i lly i ini i i i

l i l 
l

Lo m 

M ry 

rki

M ry 

Fa 2005 6.170 Laboratory n Software Eng neer ng 21 

Memory 

Work ng memory 
– Sma : 7 ± 2 chunks
– Short- ved: ~10 sec 
– Ma ntenance rehearsa fends off decay 

but costs attent on

Long-term memory 
– Pract ca nf te n s ze and durat on 
– E aborat ve rehearsa transfers chunks to 

ong-term memory 

ng-ter

emo

Wo ng 

emo

Working memory is where you do your conscious thinking. In terms of the MHP, working memory 
is where the cognitive processor gets its operands and drops its results. The currently favored model 
in cognitive science holds that working memory is not actually a separate place in the brain, but 
rather a pattern of activation of elements in the long-term memory. 

A famous result is that the capacity of working memory is roughly 7 ± 2 things. That‘s pretty small! 
A good interface won‘t put heavy demands on the user‘s working memory. 

Working memory decays in tens of seconds. Maintenance rehearsal œ repeating the items to yourself 
œ fends off this decay, but maintenance rehearsal requires attention. So if distractions can destroy 
working memory. 

Long-term memory is probably the least understood part of human cognition. It contains the mass of 
our memories. Its capacity is huge, and it exhibits little decay. Long-term memories are apparently 
not intentionally erased; they just become inaccessible. 

Maintenance rehearsal (repetition) appears to be useless for moving information into into long-term 
memory. Instead, the mechanism seems to be elaborative rehearsal, which seeks to make 
connections with existing chunks. Elaborative rehearsal lies behind the power of mnemonic 
techniques like associating things you need to remember with familiar places, like rooms in your 
childhood home. Elaborative rehearsal requires attention resources too. 

21 



ll i i i

• i i
• i i

i i l

• igi i is i l i
l igi

Fa 2005 6.170 Laboratory n Software Eng neer ng 22 

Chunking 

“Chunk” = un t of percept on or memory 
Chunk ng depends on presentat on and 
ex st ng know edge 

M W R C A A O L I B M F B I B 
MWR CAA OLI BMF BIB 
BMW RCA AOL IBM FBI 

3-4 d t chunk ng dea for encod ng 
unre ated d ts 

The elements of perception and memory are called chunks. In one sense, chunks are defined 
symbols; in another sense, a chunk represents the activation of past experience. 

Our ability to form chunks in working memory depends strongly on how the information is presented 
œ a sequence of individual letters tend to be chunked as letters, but a sequence of three-letter groups 
tend to be chunked as groups. It also depends on what we already know. If the three letter groups 
are well-known TLAs (three-letter acronyms) with well-established chunks in long-term memory, we 
are better able to retain them in working memory. 

Chunking is illustrated well by a famous study of chess players. Novices and chess masters were 
asked to study chess board configurations and recreate them from memory. The novices could only 
remember the positions of a few pieces. Masters, on the other hand, could remember entire boards, 
but only when the pieces were arranged in legal configurations. When the pieces were arranged 
randomly, masters were no better than novices. The ability of a master to remember board 
configurations derives from their ability to chunk the board, recognizing patterns from their past 
experience of playing and studying games. 

22 



23

Fall 2005 6.170 Laboratory in Software Engineering 23

Color Blindness

• 8% of people can’t distinguish red-green

• Blue-yellow color blindness also exists, 
but is rarer

normal vision red-green deficient

Color deficiency (“color blindness”) affects a significant fraction of human beings.  An 
overwhelming number of them are male. Since color blindness affects so many people, it is essential 
to take it into account when you are deciding how to use color in a user interface.  Don’t depend 
solely on color distinctions, particularly red-green distinctions, for conveying information. Microsoft 
Office applications fail in this respect: red wavy underlines indicate spelling errors, while identical 
green wavy underlines indicate grammar errors.

Traffic lights are another source of problems.  How do red-green color-blind people know whether 
the light is green or red?  Fortunately, for US traffic lights, there’s a spatial cue: red is always above 
(or to the left of) green. For some kinds of red-green color deficiency, the red light also looks darker 
than the green light.

Courtesy of Google Inc. Used with permission.

               Screenshots of Google logo removed for copyright reasons.



ll i i i

• l
ti

• l l

Fa 2005 6.170 Laboratory n Software Eng neer ng 24 

Chromatic Aberration 

Lens can’t focus b ue and red at same 
me 

So b ue-on-red text ooks fuzzy and 
hurts to read 

Chromatic aberration is another important problem. The refractive index of your eye’s lens varies 
with the wavelength of the light passing through it; just like a prism, different wavelengths are bent 
at different angles. So your eye needs to focus differently on red features than it does on blue 
features. 

As a result, an edge between widely-separated wavelengths – like blue and red – simply can’t be 
focused. It always looks a little fuzzy. So blue-on-red or red-on-blue text is painful to read, and 
should be avoided at all costs. 

Apple’s ForceQuit tool in Mac OS X, which allows users to shut down misbehaving applications, 
unfortunately falls into this trap. In its dialog, unresponding applications are helpfully displayed in 
red. But the selection is a blue highlight. The result is incredibly hard to read. 

24 

Screenshot removed for copyright reasons.

 



ll i i i

• i i i
• i li
• i

Fa 2005 6.170 Laboratory n Software Eng neer ng 25 

Next Time: Usability Engineering 

Des gn heur st cs 
Low-f de ty prototypes 
User test ng 

25



