Module Dependence Diagrams

6.170 Lecture 10
Fall 2005

A central issue in designing software is how to decompose a program into parts. In this lecture,
we’ll introduce some fundamental notions for talking about parts and how they relate to one
another. Our focus will be on identifying the problem of coupling between parts, and showing how
coupling can be reduced.

A good programming language allows you to express the dependences between parts, and control
them — preventing unintended dependences from arising. In this lecture, we’ll show the features of
Java can be used to express and tame dependences through a simple coding exercise, that illustrates
in particular the role of interfaces.

1 Module Dependency Diagrams

Let’s start with introducing the module dependency diagram (MDD). An MDD shows two kinds of
program parts: implementation parts (classes in Java) shown as boxes with a single extra stripe at
the top, and specification parts shown as boxes with a stripe at the top and bottom. Organizations
of parts into groupings (such as packages in Java) can be shown as contours enclosing parts in
Venn-diagram-style.

A plain arrow with an open head connects an implementation part A to a specification part S,
and says that the meaning of A depends on the meaning of S. Since the specification S cannot itself
have a meaning dependent on other parts, this ensures that a part’s meaning can be determined
from the part itself and the specifications it depends on, and nothing else. An arrow from an
implementation part A to a specification part S with a closed head says that A meets S: its meaning
conforms to that of S. By introducing a specification part S, we can say that A depends on S
and B meets S. The diagrams below illustrate this; note the use of two double lines to distinguish
specification parts from implementation parts.

A SA
/N

depends mbets

SB A

/N

depends

meets

B Sg

Each arc incurs an obligation. The writer of A must check that it will work if it is assembled
with a part that satisfies the specification S. And ‘works’ is now defined by explicitly meeting
specifications: B will be usable in A if it works according to the specification S, and A will be
deemed to work if it meets whatever specification is given for its intended uses — T say. The



diagram on the right shows this. It’s the same depends-meet chain centered on an implementation
part rather than a specification part.

Because specifications are so essential, we will always assume they are present. Most of the
time, we will not draw specification parts explicitly, and so a dependence arrow between two
implementation parts A and B should be interpreted as short for a dependence from A to the
specification of B, and a meets arrow from B to its specification. We will show Java interfaces as
specification parts explicitly.

A dotted arrow from A to B is a weak dependence; it says that A depends only the existence of
a part satisfying the specification of B, but actually has no dependence on any details of B. In other
words, A references the name of B, but not the name of any of its members. A knows that the class
or interface B exists, and refers to variables of that type, but calls no methods of B, and accesses
no fields of B.

The MDD for a browser is shown below.

Main

Parser Protocol

Display

AST Page Network

The Main part uses the Protocol part to engage in the HTTP protocol, the Parse part to
parse the HTML page received, and the Display part to display it on the screen. These parts in
turn use other parts. Protocol uses Network to make the network connection and to handle the
low-level communication, and Page to store the HTML page received. Parser uses the part AST to
create an abstract syntax tree from the HT'ML page — a data structure that represents the page as
a logical structure rather than as a sequence of characters. Parser also uses Page since it must be
able to access the raw HTML character sequence.

In our browser, for example, the abstract syntax tree in AST may be accessible as a global
name (using the Singleton pattern, which we’ll see later). But for various reasons — we might for
example later decide that we need two syntax trees — it’s not wise to use global names in this way.
An alternative is for the Main part to pass the AST part from the Parse part to the Display part.
This would induce a weak dependence of Main on AST. The same reasoning would give a weak
dependence of Main on Page (not shown in figure).

2 Example: Instrumenting a Program

For the remainder of the lecture, we’ll study some decoupling mechanisms in the context of an
example that’s tiny but representative of an important class of problems.

Suppose we want to report incremental steps of a program as it executes by displaying progress
line by line. For example, in a compiler with several phases, we might want to display a message
when each phase starts and ends. In an email client, we might display each step involved in
downloading email from a server. This kind of reporting facility is useful when the individual steps
might take a long time or are prone to failure (so that the user might choose to cancel the command



that brought them about). Progress bars are often used in this context, but they introduce further
complications (marking the start and end of an activity, and calculating proportional progress)
which we won’t worry about.

As a concrete example, consider an email client that has a package core that contains a class
Session that has code for setting up a communication session with a server and downloading mes-
sages, a class Folder for the objects that models folders and their contents, and a class Compactor
that contains the code for compacting the representation of folders on disk. Assume there are calls
from Session to Folder and from Folder to Compactor, but that the resource intensive activities
that we want to instrument occur only in Session and Compactor, and not in Folder.

The module dependency diagram shows that Session depends on Folder, which has a mutual
dependence on Compactor.

Core

Session Folder Compactor

We'll look at a variety of ways to implement our instrumentation facility, and we’ll study the
advantages and disadvantages of each. Starting with the simplest, most naive design possible, we
might intersperse statements such as

System.out.println ("Starting download");

throughout the program.

2.1 Abstraction by Parameterization

The problem with this scheme is obvious. When we run the program in batch mode, we might
redirect standard out to a file. Then we realize it would be helpful to timestamp all the messages
so we can see later, when reading the file, how long the various steps took. We’d like our statement
to be

System.out.println ("Starting download at: " + new Date ());

instead. This should be easy, but it’s not. We have to find all these statements in our code (and
distinguish from other calls to System.out.println that are for different purposes), and alter each
separately.

Of course, what we should have done is to define a procedure to encapsulate this functionality.
In Java, this would be a static method:

public class StandardOutReporter {
public static void report (String msg) {
System.out.println (msg);
}
}

Now the change can be made at a single point in the code. We just modify the procedure:



public class StandardOutReporter {
public static void report (String msg) {
System.out.println (msg + " at: " + new Date ());
}
}

The mechanism in this case is one you're familiar with: what 6001 called abstraction by pa-
rameterization, because each call to the procedure, such as

StandardOutReporter.report ("Starting download");

is an instantiation of the generic description, with the parameter msg bound to a particular value.

We can illustrate the single point of control in a module dependence diagram. We’ve introduced a

single class on which the classes that use the instrumentation facility depend: StandardOutReporter.
Note that there is no dependence from Folder to StandardOutReporter, since the code of Folder

makes no calls to it.

Core

Session Folder Compactor

ui

StandardOut
Reporter

2.2 Decoupling with Interfaces

This scheme is far from perfect though. Factoring out the functionality into a single class was a good
idea, but the code still has a dependence on the notion of writing to standard out. If we wanted to
create a new version of our system with a graphical user interface, we’d need to replace this class
with one containing the appropriate GUI code. That would mean changing all the references in the
core package to refer to a different class, or changing the code of the class itself, and now having to
handle two incompatible versions of the class with the same name. Neither of these is an attractive
option.

In fact, the problem is even worse than that. In a program that uses a GUI, one writes to the
GUI by calling a method on an object that represents part of the GUI: a text pane, or a message
field. In Swing, Java’s user interface toolkit, the subclasses of JTextComponent have a setText
method. Given some component named by the variable outputArea, for example, the display
statement might be:

outputArea.setText (msg)

How are we going to pass the reference to the component down to the call site? And how are we
going to do it without now introducing Swing-specific code into the reporter class?

Java interfaces provide a solution. We create an interface with a single method report that
will be called to display results.



public interface Reporter {
void report (String msg);

}

Now we add to each method in our system an argument of this type. The Session class, for
example, may have a method download:

void download (Reporter r, ...) {
r.report ("Starting downloading" );

3

Now we define a class that will actually implement the reporting behavior. Let’s use standard out
as our example as it’s simpler:

public class StandardOutReporter implements Reporter {
public void report (String msg) {
System.out.println (msg + " at: " + new Date ());
b
X

This class is not the same as the previous one with this name. The method is no longer static, so
we can create an object of the class and call the method on it. Also, we’ve indicated that this class
is an implementation of the Reporter interface. Of course, for standard out this looks pretty lame
and the creation of the object seems to be gratuitious. But for the GUI case, we’ll do something
more elaborate and create an object that’s bound to the particular widget:

public class JTextComponentReporter implements Reporter {
JTextComponent comp;
public JTextComponentReporter (JTextComponent c) {comp = c;}
public void report (String msg) {
comp.setText (msg + " at: " + new Date ());
}
}

At the top of the program, we’ll create an object port and pass it in to a Session object’s download
method:

Reporter port = new StandardOutReporter (); // in Main
session.download (port, ...); // in Session

Now we’ve achieved something interesting. The call to report now executes, at runtime, code that
involves System.out. But methods like download only depend on the interface Reporter, which
makes no mention of any specific output mechanism. We’ve successfully decoupled the output
mechanism from the program, breaking the dependence of the core of the program on its I/0O.



Core

Session Folder Compactor

I
]
— = Reporter

AN

ui

I

I

I
— 1 _
Main StandardOut
Reporter

Look at the module dependency diagram. Recall that an arrow with a closed head from A to B
is read A meets B. B might be a class or an interface; the relationship in Java may be implements
or extends. Here, the class StandardOutReporter meets the interface Reporter. Similarly, the
class JTextComponentReporter will also meet Reporter, and there will be a dependence on Main
on JTextComponentReporter (not shown in figure).

The key property of this scheme is that there is no longer a dependence of any class of the core
package on a class in the ui package. All the dependences point downwards (at least logically!)
from ui to core. To change the output from standard output to a GUI widget, we would simply
replace the class StandardOutReporter by the class JTextComponentReporter, and modify the
code in the main class of the ui package to call its constructor on the classes that actually contain
concrete I/O code. We just modify the code as:

Reporter port = new JTextComponentReporter (outputArea) ; // in Main

and pass the object to Session as before. This idiom is perhaps the most popular use of interfaces,
and is well worth mastering.

Recall that the dotted arrows are weak dependences. A weak dependence from A to B means
that A references the name of B, but not the name of any of its members. In other words, A knows
that the class or interface B exists, and refers to variables of that type, but calls no methods of B,
and accesses no fields of B.

The weak dependence of Main on Reporter simply indicates that the Main class may include
code that handles a generic reporter; it’s not a problem. The weak dependence of Folder on
Reporter is a problem though. It’s there because the Reporter object has to be passed via methods
of Folder to methods of Compactor. Every method in the call chain that reaches a method that
is instrumented must take a Reporter as an argument. This is a nuisance, and makes retrofitting
this scheme painful.

2.3 Static Fields

The clear disadvantage of the scheme just discussed is that the reporter object has to be threaded
through the entire core program. If all the output is displayed in a single text component, it seems
annoying to have to pass a reference to it around. In dependency terms, every module has at least
a weak dependence on the interface Reporter.

Global variables, or in Java static fields, provide a solution to this problem. To eliminate many
of these dependences, we can hold the reporter object as a static field of a class:



public class StaticReporter {
static Reporter r;
static void setReporter (Reporter r) {
this.r = r;
}
static void report (String msg) {
r.report (msg);
}
}

Now all we have to do is set up the static reporter at the start:
StaticReporter.setReporter (new StandardOutReporter ());
and we can issue calls to it without needing a reference to an object:

void download (...) {
StaticReporter.report ("Starting downloading" );

}

In the module dependency diagram (see below), the effect of this change is that now only the
classes that actually use the reporter are dependent on it.

Notice how the weak dependence of Folder has gone. We've seen this global notion before,
of course, in our second scheme whose StandardOutReporter had a static method. This scheme
combines that static aspect with the decoupling provided by interfaces.

Core

Session Folder Compactor

StaticReporter

Reporter

ui JAN

Main StandardOut
Reporter

Global references are handy, because they allow you to change the behavior of methods low
down in the call hierarchy without making any changes to their callers. But global variables are
dangerous. They can make the code fiendishly difficult to understand. To determine the effect of
a call to StaticReporter.report, for example, you need to know what the static field r is set to.
There might be a call to setReporter anywhere in the code, and to see what effect it has, you’d
have to trace executions to figure out when it is executed relative to the code of interest.



Another problem with global variables is that they only work well when there is really one
object that has some persistent significance. Standard out is like this. But text components in a
GUI are not. We might well want different parts of the program to report their progress to different
panes in our GUI. With the scheme in which reporter objects are passed around, we can create
different objects and pass them to different parts of the code. In the static version, we’ll need to
create different methods, and it starts to get ugly very quickly.

Concurrency also casts doubt on the idea of having a single object. Suppose we upgrade our
email client to download messages from several servers concurrently. We would not want the
progress messages from all the downloading sessions to be interleaved in a single output.

A good rule of thumb is to be wary of global variables. Ask yourself if you really can make do
with a single object. Usually you’ll find ample reason to have more than one object around. This
scheme goes by the term Singleton in the design patterns literature, because the class contains only
a single object.



