
6.170 Laboratory in Software Engineering

Fall 2005

Problem Set 4: Design an Abstract Data Type

Due: Thursday, October 13, 2005 at 1:00pm

Contents:

• Purpose
• Background
• Exercises
• Design Problem

o Problem 1
o Problem 2
o Problem 3
o Problem 4

• Mechanics
• Hints
• Expectations
• Errata

We recommend that you read the entire problem set before you begin work.

Purpose

The purpose of this problem set is to improve your
understanding of Abstract Data Types (ADTs). You will
design, implement and test a directed labeled multi-
graph, and, in so doing, will gain a better appreciation
for the role that fundamental tools such as
specifications, object models and the rep invariant play
in the design of a module.

Designing an abstract type involves determining what
services it should provide and what their behavior
should be -- that is, writing a specification.
Implementing an abstract type involves choosing a
representation and algorithms, and embodying them in
code. The focus of this exercise is the design, so you
should expect to spend a considerable amount of time
on it. Note the distribution of points among each
problem. We advise you to distribute your time
accordingly.

Graphs

The abstract type that you'll design is a directed labeled
multi-graph. A graph is a collection of nodes with edges
between them. Every edge connects one node (the
source) to one other node (the target). There can be
nodes without edges but no edges without nodes. A node
may be connected to itself. In a multi-graph, there can
be zero, one or more edges between a pair of nodes.
Every edge has a label. Distinct edges may have the
same label.

Some examples of directed labeled multi-graphs are
depicted below.

Background

a graph with 1 node a graph with 2 nodes

and 1 edge
a graph with 3 nodes

and 5 edges

Here are some examples of applications of directed
labeled multi-graphs.

• A compiler may represent the control flow of a
program as a graph whose nodes are points in the
program, and whose edges are program
statements. The graph would be used for analyses,
such as propagating the values of constants, and
for transformations, such as hoisting a statement
out of a loop.

• A website design tool may represent a website as a
graph whose nodes are documents and whose edges
are links. The tool may examine the site for
connectivity, find broken links, update all
documents when a document is moved, and so on.

• A curriculum design tool may use a graph to show
prerequisite relationships between courses, to find
inconsistencies and determine feasible programs of
study.

• A program for generating driving directions may
use a graph to represent a street map, and compute
a shortest path to find directions from one point to
another.

• A Java compiler may use a graph to represent
dependences between source code files, in order to
determine a reasonable order of compilation.

Exercises
Approximate time to completion: 15 to 30 minutes

Answer the following questions in a file named
exercises.txt and put it in the doc/ directory.

1. The source code for TreeSet.java is provided to you
under the src/java/util/ directory. Read this source
code, along with the Java specifications for TreeSet,
and write the abstraction function and
representation invariant for that class.

Note: although you will probably not need them,
you will also find the source code for AbstractSet and
AbstractCollection in your source directory.

2. Below are signatures for various
methods/constructors. From the information

available (for example, the return type), which of
these methods/constructors could possibly expose
the representation? Give a brief explanation in
each case.

(a) public int solveEquations(int x, int y, int z)

(b) public String[] decode(boolean slowly)

(c) private Date myBirthday()

(d) public String toString()

(e) public Iterator elements()

(f) public Deck(List cards)

Design Problem

Your task is to design, implement and test an abstract
data type for a directed labeled multi-graph.

This datatype will be used to find directions on the
Boston subway. In this particular application, the nodes
will represent stations and the edges will represent
track segments. Your design and implementation
should, however, be polymorphic. This means that the
node type should be generic; it should be possible to use
your graph design and implementation (possibly with a
few small modifications) in different applications, where
nodes and edges represent other things. (Note: we do

not require your ADT to support Java 1.5
parameterization, but that could be a nice feature.)

Your graph implementation must be efficient. This
means it should perform reasonably for medium-sized
graphs, of thousands (but not millions) of nodes and
edges. You should not assume that the graph will be
sparse (that is, containing very few edges compared to
nodes) or dense (that is, with most node pairs
connected). The asymptotic running time of your
implementation is what matters. However, don't make
your code less general or harder to read for the sake of
small efficiency gains. (See Item 37, 'Optimize
Judiciously', in Joshua Bloch's Effective Java.)

Problem 1: Graph Specification
Approximate time to completion: one hour

Design an abstract data type for a directed labeled
multi-graph.

You should hand in the following artifacts:

1. An object model of the problem domain (Turn in
as doc/pom.gif or doc/pom.png)

2. A design rationale (doc/design.txt), which includes:
o a brief overview of your design;
o a variety of alternative designs that you

considered but rejected, with explanations of
why they were rejected;

o any assumptions you made when designing
your ADT.

3. A specification for each public class or interface in
your design (placed in the directory src/ps4/graph/),
containing:

o an overview paragraph explaining in abstract
terms what objects are represented by that
class or interface, and whether they are
mutable or not;

o a specification of each non-private method.

The specifications should be in the source code files.
You should not turn in the HTML files generated by
Javadoc, but you are responsible for making sure that
Javadoc can correctly generate HTML files from your
source code.

NOTE: Please make sure your GIF or PNG picture files
are added to CVS in binary mode. To ensure new files
are added in binary mode, go to the menu on top and
click on Window. Then click on Preferences..., expand
the Team option on the left, then click on the CVS
option under Team. Make sure you check the checkbox
that says Treat all new files as binary. You can then click
OK to close the window.

Running validate6170 ps4 will check to make sure your files
are added in the right mode to CVS.

Approximate time to completion: two hours

Implement the graph ADT you designed in Problem 1.

You should hand in the following artifacts:

1. A overview of the implementation you chose (as
distinguished from your design), along with a brief
rationale justifying your implementation decisions
in comparison to alternative implementations.
Include rough estimates of the time and space
required by your implementation. (Turn this in as
doc/implementation.txt.)

2. A representation invariant and abstraction
function. You can use either the 6.170 specification
notation, or state these informally. If you state
them informally, you will have to be extra careful
to be precise. (Turn in as doc/ri_af.txt.)

3. A code object model representing your specific
implementation of a graph. (Turn in as doc/com.gif or
doc/com.png)

4. Well-commented source code (placed in the
directory src/ps4/graph/).

Problem 3: Testing Graph
Approximate time to completion: one hour

Test your graph ADT.

Problem 2: Graph Implementation

1. A small collection of plausible JUnit test cases
(placed in the directory src/ps4/tests/);

2. A brief explanation of why the tests you chose to
implement increase your confidence on the code
you wrote (turned in as doc/tests.txt);

Problem 4: Using Graph
Approximate time to completion: two hours

Write a program named MetroDirections.java that generates
directions for the Boston subway system. You should
implement the getDirections(String fileName, String origin, String
destination) method which takes an input file name and
two station names and returns a String containing
directions from the origin to the destination. The string
should list stations in successive order, separated by the
subway line to be taken between them.

We provide you with a simple text file
(input/bostonmetro.txt) that describes the Boston subway
system, along with a basic parser
(src/ps4/directions/MetroMapParser.java). You can use (or not
use) this code in any way you like; you should be able to
just insert calls to your ADT methods to construct the
graph from the file. Depending on the design of your
graph, you may need to modify the code more or less;
you may even require more than one pass through the
file. If you use this code, you should clearly document
any modifications you make. Furthermore, your code

You should hand in the following elements:

should be able to handle different input files in the same
format.

The format of the output should be:
Station1-(Line12)-Station2-(Line23)-Station3-...-StationN-1-(LineN-1N)-
StationN

where StationX is the name of a station (e.g. Kendall), and
LineXY is the name of a line (e.g. GreenB). For example:
getDirections("input/bostonmetro.txt", "Kendall", "Haymarket") should
return:
Kendall-(Red)-Charles/MGH-(Red)-ParkStreet-(Green)-GovernmentCenter-
(Green)-Haymarket

A simple breadth-first search is adequate. You're not
expected to make this program realistic. But we would
like you to think a bit about what complications would
arise if you were to do so.

Be sure to run validate6170 ps4 when you're finished. You
should hand in the following artifacts:

1. Well-commented source code (placed in the
directory src/ps4/directions/);

2. Sample output of running getDirections() on at least
four reasonably comprehensive test cases (turned
in as the file doc/samples.txt). For debugging purposes,
we have included a skeleton JUnit test file in
MetroDirectionsTest.java. Your code should pass the test
there, and we encourage you to append your own
tests to the file.

3. Some comments about what complications would
arise in a more realistic design of a directions

finder for the Boston subway, focusing on the
structure of the subway and the directions (turned
in as the file doc/comments.txt).

Mechanics

In your repository

In your CVS repository you will find the following files:

• src/java/util/*.java : the source code for TreeSet.
• src/ps4/graph/Graph.java : a skeleton file for your Graph

ADT.
• src/ps4/directions/*.java : the code we give you for your

directions finder.
• src/ps4/tests/*.java : skeleton files for JUnit tests.
• input/bostonmetro.txt : a description of the Boston

subway system.
• build.xml : an ant script that generates the Javadoc

files for all source files located at src/ps4.

Checking in

You should submit the following elements:

Text files
• doc/exercises.txt
• doc/design.txt
• doc/implementation.txt
• doc/ri_af.txt
• doc/tests.txt
• doc/samples.txt
• doc/comments.txt

Object models

• doc/pom.gif or doc/pom.png
• doc/com.gif or doc/com.png

Source files in the following directories
• src/ps4/graph/
• src/ps4/tests/
• src/ps4/directions/

Note: You should run validate6170 ps4 on Athena to
verify that all the required files are in CVS and that
your Java files are compilable.

Hints

To give you some sense of the kinds of issues you should
be considering in your design, here are some questions
you might want to consider. These don't in general have
simple answers. You'll need to exercise careful
judgment, and think carefully about how decisions you
make interfere with each other.

• will the graph be mutable or immutable? will it be
possible to change the label of an edge?

• will edge labels be strings or generic objects? if
objects, will it be OK to use a node or an edge as a
label? or even a graph?

• will nodes be required only to satisfy the interface
of java.lang.Object? or will you design a Java
interface for nodes?

• will the graph be implemented as a single class, or
will there be a separate Java interface for the
Graph specification, and a class for the
implementation?

• will edges be objects in their own right? will they
be visible to a client of the abstract type?

• will it be possible to find the successor of a node
from the node alone, or will the graph be needed
too? can a node belong to multiple graphs?

• what kind of iterators will the type provide?
• should path-finding operations be included as

methods of the graph, or should they be
implemented in client code on top of the graph?

• will the type provide any views, like the set view
returned by the entrySet method of java.util.Map?

• will the type implement any standard Java
collection interfaces?

• will the type use any standard Java collections in
its implementation?

You may find the Integer.parseInt(String s) method to be of
use in converting String's into int's.

Although it is generally a bad idea to start coding before
you have thought deeply, it often makes sense to work
incrementally, interleaving design and coding. Once you
have a sketch of your specification, you may want to
write some experimental code. This should give you
some concrete feedback on how easy it is to implement
the methods you've specified. You may even want to
start at the end, and write the code that uses your type,

so that you can be confident that the methods you
provide will be sufficient.

This strategy can backfire and degenerate into mindless
hacking, leaving you with a pile of low-quality code and
an incoherent specification. To avoid that, bear two
things in mind. First, you must be willing to start again:
experimental code isn't experimental if you're not
prepared to throw it away. Second, whenever you start
coding, you must have a firm idea of what you're trying
to implement. There's no point starting to code to a
specification that is vague and missing crucial details.
That doesn't mean that your specification must be
complete and polished, but it does mean that you
shouldn't start coding a method until at least you have
its own specification written. Third, you must write
down the specification of a method and not just imagine
it; it's too easy to delude yourself. Try to write it on
paper and mull it over before you start any coding. It's
tempting to sit in front of an editor, write some
specification as comments, and then start coding
around them, but this tends not to be nearly so effective.

Make good use of your TA. Take your specification to
office hours before going to the lab and get some
feedback on your design and style. This is likely to save
you a lot of time!

What you need to know before you start:

You should be familiar with the basic concepts of data
abstraction, and what comprises a good abstract type;
with the notions of representation invariant and
abstraction function; how to express structure as an
object model; how to write specifications of methods;
and you should have by now some experience writing
Java code.

What you should expect to learn:

You will learn about the challenges of designing a useful
data type. You should also expect to gain experience
with the process of designing flexible and robust
software.

How you will be evaluated:

• 15 points for the exercises.
• 35 points for the graph design and its justification.
• 25 points for the implementation: the choice of rep

invariant and abstraction function, and for writing
clean and well-organized code.

• 10 points for a reasonable selection of unit test
cases for the graph datatype.

• 15 points for the directions finder.

Errata

There are no known problems with this problem set.

Expectations

	Purpose
	Background
	Designing an abstract type involves determining what service
	Graphs

	The abstract type that you'll design is a directed labeled m
	Here are some examples of applications of directed labeled m
	A compiler may represent the control flow of a program as a
	A website design tool may represent a website as a graph who
	A curriculum design tool may use a graph to show prerequisit
	A program for generating driving directions may use a graph
	A Java compiler may use a graph to represent dependences bet
	Exercises
	Approximate time to completion: 15 to 30 minutes

	Design Problem
	Your task is to design, implement and test an abstract data
	Problem 1: Graph Specification
	Approximate time to completion: one hour

	An object model of the problem domain (Turn in as doc/pom.gi
	A design rationale (doc/design.txt), which includes:
	a brief overview of your design;
	a variety of alternative designs that you considered but rej
	any assumptions you made when designing your ADT.
	A specification for each public class or interface in your d
	an overview paragraph explaining in abstract terms what obje
	a specification of each non-private method.
	Problem 2: Graph Implementation
	Approximate time to completion: two hours

	A overview of the implementation you chose (as distinguished
	A representation invariant and abstraction function. You can
	A code object model representing your specific implementatio
	Well-commented source code (placed in the directory src/ps4/
	Problem 3: Testing Graph
	Approximate time to completion: one hour

	A small collection of plausible JUnit test cases (placed in
	A brief explanation of why the tests you chose to implement
	Problem 4: Using Graph
	Approximate time to completion: two hours

	Well-commented source code (placed in the directory src/ps4/
	Sample output of running getDirections() on at least four re
	Some comments about what complications would arise in a more
	Mechanics
	In your repository

	src/java/util/*.java : the source code for TreeSet.
	src/ps4/graph/Graph.java : a skeleton file for your Graph AD
	src/ps4/directions/*.java : the code we give you for your di
	src/ps4/tests/*.java : skeleton files for JUnit tests.
	input/bostonmetro.txt : a description of the Boston subway s
	build.xml : an ant script that generates the Javadoc files f
	Checking in

	Text files
	doc/exercises.txt
	doc/design.txt
	doc/implementation.txt
	doc/ri_af.txt
	doc/tests.txt
	doc/samples.txt
	doc/comments.txt
	doc/pom.gif or doc/pom.png
	doc/com.gif or doc/com.png
	src/ps4/graph/
	src/ps4/tests/
	src/ps4/directions/
	Hints
	To give you some sense of the kinds of issues you should be
	will the graph be mutable or immutable? will it be possible
	will edge labels be strings or generic objects? if objects,
	will nodes be required only to satisfy the interface of java
	will the graph be implemented as a single class, or will the
	will edges be objects in their own right? will they be visib
	will it be possible to find the successor of a node from the
	what kind of iterators will the type provide?
	should path-finding operations be included as methods of the
	will the type provide any views, like the set view returned
	will the type implement any standard Java collection interfa
	will the type use any standard Java collections in its imple
	Expectations
	What you need to know before you start:
	What you should expect to learn:
	How you will be evaluated:

	15 points for the exercises.
	35 points for the graph design and its justification.
	25 points for the implementation: the choice of rep invarian
	10 points for a reasonable selection of unit test cases for
	15 points for the directions finder.
	Errata

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

