
6.170 Laboratory in Software Engineering

Fall 2005

Problem Set 3: Mechanical Extraction of Object
Models from Bytecode

Due: Thursday, October 6, 2005 at 1:00pm

Contents:

• Introduction
• How to Get Started
• Problem 1 and 2: Preliminary Exercises
• Problem 3: Compilation, Bytecode, and Virtual Machines
• Problem 4: The BCEL library
• Problem 5: Thinking about writing a static analysis tool for Java bytecode
• Problem 6 and 7: Implementing a static analysis tool for Java bytecode

o Checking In
o Grading
o Hints

• Errata
• Q & A
• Further Reading

Introduction
This problem set will deepen your understanding of object models by having you write a
tool to mechanically extract them from Java bytecode. (In other words, you will write a
program that reads in compiled Java class files and draws a picture of them.) By
completing this problem set you will learn: how easy or difficult it is to express each
feature of the object model notation in Java; and what is easy for a programmer to
understand from reading code, but is difficult for an automatic extraction tool to deduce.

We have listed the estimated required time for each problem. The time is loosely based
on the amount of time that the TA's spent working on it, as well as the level of learning
curve we estimate from one question to the next. It is only meant to help guide your
effort; do not feel discouraged if you spend more time on a question. In fact, all the
questions are cumulative, so if you spend more time figuring out how to tackle 1
question, it will help you solve the following questions as well.

How to Get Started:
Step 1: First of all, you must make sure you have access to the dot program. On Athena,
type add outland to add it to your search path. Elsewhere, download a pre-built
binary from graphviz.org. If you are working from home, you must make sure that dot is
on your program search path before loading Eclipse (otherwise Eclipse won't find it).
More instructions can be found on the working at home document in the tools section.

Note: To verify whether your DOT is working or not, type "dot -V" on a
command line prompt. You must have version 1.11 or later. (If you're on
Windows, you must make sure your DOT version is 2.6 or newer).

Step 2: Start up Eclipse and check out ps3. Go to the left side of the window, under ps3,
you should see a file named build.xml. Right click on it, then click Run As, then click
Ant Build. Make sure there are no error messages of any sort.

In the past, students have reported many troubles with running Dot on a
Sun Athena. Dot appears to work fine on Linux Athena and on home
machines. If Dot is giving you trouble, you may need to switch to a Linux
Athena machine, then type
 cp -r 6.170 6.170.backup
to make a copy of your old 6.170 files. Then type:
 eclipse
and then repeat the initial setup steps you did in problem set 0 (to create
the two CVS repositories, and then set Java Compiler level to 5.0)

Step 3: Start a web browser, then load the file ps3/doc/report.html into your browser.
Make sure the file looks okay on your browser. There must be 1 picture under question 1
and 8 pictures under question 6. Throughout this problem set, you will be typing your
answers into the report.html, so it is very important that you can complete all the steps
listed so far. If there are any problems, please post your question to the 6.170 web forum
or email a TA.

Problem 1 and Problem 2: Preliminary Exercises
Approximate time to completion: 15 to 30 minutes

This pset will require you to type your answers into an HTML file. You do not need to
know any HTML tags to do this: just open up the HTML file, search for "your text here",
and write your answer in.

http://graphviz.org/

Please use a regular text editor (eg, Eclipse's default text editor, emacs, vi, notepad) to
edit the HTML, or a program that is designed to edit HTML. Please do not use a program
like Microsoft Word, that can save HTML files but is not really an HTML editor.

How to draw the diagrams:

During this problem set you will be producing diagrams using the "Graphviz/Dot" tool.
To use this tool, you (or your Java analysis tool) should write out the list of nodes and list
of edges into a ".dot" file. Then you can use the "dot" program to automatically convert
your ".dot" file into a graphical ".png" file.

Here is a sample file that will probably have all of the features that you will need to
know:

 digraph FileSystem {

 // The following 2 lines define the default NODE and EDGE
attributes
 node [shape="box", fontname="courier", fontsize="12"];
 edge [arrowhead="open", arrowsize="0.8", fontname="courier",
fontsize="12"];

 // subsets
 // note that the edges are nominally backwards
 // in order to get dot to draw them how one would expect
 // use the parallelogram shape for abstract sets
 FSO [label="abstract\nFile System Object",
shape="parallelogram"];
 FSO -> Directory [arrowhead="none", arrowtail="empty"];
 Directory -> Root [arrowhead="none", arrowtail="empty"];
 FSO -> File [arrowhead="none", arrowtail="empty"];
 File -> Link [arrowhead="none", arrowtail="empty"];

 // relations
 Directory -> FSO [arrowhead="open", label="contains",
 headlabel="*", taillabel="?"];
 Link -> FSO [arrowhead="open", label="to",
 headlabel="!", taillabel="*"];

 // use the Msquare shape for fixed sets
 Fixed [shape="Msquare"];
 }

If you save that in a file called example.dot and run the following commands you'll get
the picture below:

 dot -Tpng -o example.png example.dot

http://graphviz.org/

TODO:

Problems 1 and 2 are listed in the file ps3/doc/report.html that we provided for you.
Please open up the file, and fill in your answers to problems 1 and 2.

Problem 3: Compilation, Bytecode, and Virtual
Machines
Approximate time to completion: 15 to 30 minutes

A compiler is a program that translates a program written in a textual form (ie, source
code), to an equivalent binary representation. The textual form is convenient for people to
read and write, and the binary form is convenient for a computer to execute. This
translation process is called compilation.

In Java, source code is written in .java files, which are compiled to .class files.

The Eclipse development environment compiles your source code automatically as you
edit it. Eclipse puts the .class files that it generates in the bin subdirectory of your
project, which is hidden from view in the Eclipse Java perspective; you'll see it if you
look in the file system, or use the Eclipse Resource perspective. (Eclipse can be
configured to put .class files somewhere other than the bin subdirectory, but that is
their conventional location.)

If you work with another set of tools, you may have to manually invoke a Java compiler
to translate your .java files to .class files.

In the case of Java, Java source code is usually compiled to Java bytecode (stored in
.class files), which is the binary format for the Java virtual machine (JVM). The JVM
translates Java bytecode to the native machine instructions at program runtime.

Java Bytecode

The Java .class file format is documented in the Java Virtual Machine Specification,
chapter 4.

Hint: you don't need to read the whole thing, and you don't want to print any of the
documentation. It is long, so please just treat it as an optional reference material that you
can browse through when you encounter specific questions.

In Java bytecode, constructors are invoked with the invokespecial opcode. Here's a
nice optional article about it.

http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html
http://java.sun.com/docs/books/vmspec/2nd-edition/html/ClassFile.doc.html
http://www.javaworld.com/javaworld/jw-06-1997/jw-06-hood-p3.html

The javap tool that comes with the Java SDK may be used to disassemble Java .class
files so that you can look at what a CLASS file is composed of. Hint: This kind of
dissassembly is not necessary for this problem set; it is just mentioned here, just in case
you're curious about it.

TODO:

Please edit the file ps3/doc/report.html and fill in your answers to problem 3.

Problem 4: The BCEL library
Approximate time to completion: 15 to 30 minutes

BCEL is a library that gives you an API for reading Java .class files. The BCEL
Manual gives a good overview of the .class file format and the BCEL API.

• BCEL home page
• BCEL Manual
• BCEL API
• InvokeSpecial the BCEL class representing the bytecode instruction to invoke a

constructor

Hint: you don't need to read the whole thing, and you don't want to print any of the
documentation. It is long, so please just treat it as an optional reference material that you
can browse through when you encounter specific questions.

If you are using the Kaffe VM, you may see the warning message (WARNING Bad
bytecode!...) when running the precompiled BCEL binaries, but it may be safely ignored.

TODO:

Please edit the file ps3/doc/report.html and fill in your answers to problem 4.

Problem 5: THINKING about writing a static analysis
tool for Java bytecode
Approximate time to completion: 15 to 30 minutes

At the end of Problem Set 3, you will produce a simple static analysis tool to extract
object models from Java bytecode.

http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/javap.html
http://jakarta.apache.org/bcel/index.html
http://jakarta.apache.org/bcel/
http://jakarta.apache.org/bcel/manual.html
http://jakarta.apache.org/bcel/apidocs/index.html
http://jakarta.apache.org/bcel/apidocs/org/apache/bcel/generic/INVOKESPECIAL.html

We expect your program to start out fairly short and simple, and to not grow that much
more complicated as you progress through the problem set. If you find yourself writing a
large or complicated program, or feeling that such a program is necessary, please speak
with one of the course staff. Read this entire document and do the exercises before
starting to program.

TODO:

Please edit the file ps3/doc/report.html and fill in your answers to problem 5. For
each question, write a brief comment about how your tool will extract it (if at all: some
features can not be extracted automatically). If you believe a feature can not easily be
extracted automatically, just say it can't be done. The first two boxes have been filled in
for you as an example.

Problem 6: Writing a static analysis tool for Java
bytecode

Problem 6.1: Arrays
Approximate time to completion: 1 hour

Look at inputs/arrays/Student.java and inputs/arrays/Recitation.java.

TODO #1:

First of all, draw the object model diagram by hand. You must use the Dot tool and save
it to a file called doc/manual.dot/arrays.dot so that we know where to look for it.

To use Dot:

• 1. save your Dot file in doc/manual.dot/arrays.dot
• 2. In Eclipse, look at the left of the window, and find build.xml under ps3
• 3. Right click on build.xml
• 4. Choose Run.. then choose "Ant Build".
• 5. This will then automatically convert your arrays.dot into arrays.png

TODO #2:

We have already provided ObjectModel.java file for you. Your job is to add features to
it, modify it, or enhance it until it can automatically create an Object Model Diagram
that is as close to the manually-drawn diagram as possible.

Your job can be summarized like this:

• 1. Edit ObjectModel.java
• 2. Run build.xml which will automatically generate

doc/extracted.dot/arrays.png
• 3. Load doc/report.html in your web browser
• 4. Go to section 6.1 and compare the manually-drawn picture with the picture

produced by your tool.
• 5. If it's as close as you can get, then stop. Otherwise, go back to step 1...

In fact, it is not possible for the tool to derive all the relaionships and all the multiplicity
markers automatically. So don't get frustrated if your tool can only get half way there.
Think about your answers to Problem 5: some of the features you should be able to
extract automatically, and some you shouldn't be able to.

We require that you use the Apache Foundation's Byte Code Engineering Library
(BCEL) for parsing Java bytecode into memory. You will find the BCEL JAR file in the
lib subdirectory of your ps3 project, and on your classpath (if you check out the project
using Eclipse).

We also require that your extractor produce files in the Graphviz/Dot format for textually
describing graphs. The Dot tool reads these textual descriptions of graphs and
automatically renders a graphical image of the graph.

TODO #3:

After you're done, look at the 2 pictures, and answer the question at the end of "Problem
6.1" in the doc/report.html file.

Problem 6.2: Collections
Approximate time to completion: 30 minutes

Look at inputs/collections/Student.java and
inputs/collections/Recitation.java.

TODO #1:

Draw the object model diagram by hand, using the Dot language, and save the output to
the file doc/manual.dot/collections.dot. The build.xml script will automatically
convert it to a graphical file doc/manual.dot/collections.png which will be
automatically included in doc/report.html.

http://jakarta.apache.org/bcel/index.html
http://graphviz.org/

Enhance your ObjectModel.java until its automatically-generated picture is as close to
the manually-drawn picture as possible.

TODO #3:

After you're done, look at the 2 pictures, and answer the question at the end of "Problem
6.2" in the doc/report.html file.

Problem 6.3: Yourtests
Approximate time to completion: 30 minutes

TODO:

Make up a few Java files of your choosing, and put them in the inputs/yourtests/
directory. Your example must include some interesting features (such as inheritance) so
that they can increase your confidence in your tool.

Enhance your ObjectModel.java until it can properly handle your sample examples.

After you're done, answer the question at the end of "Problem 6.3" in the
doc/report.html file.

Bonus points:

If you have the time and the inclination, do something above and beyond what's called
for here. Do something that perform more in-depth analysis, or implement some more
advanced heuristics for bonus points.

Problem 6.4: Singleton / Fixed Set
Approximate time to completion: 30 minutes to 2 hours

Singleton / Fixed Set

Given a class C, if it meets all the following criteria:

1. all constructors of C are private
2. a constructor of C is invoked by C's <clinit> method (that's the name of the

class initializer in bytecode)
3. no other static method in C invokes a constructor of C
4. C has at least one static field of type C

TODO #2:

Then it is likely that the set C is a fixed set (also known as a singleton). The criteria
represent a heuristic: when the criteria is met, it is highly likely that C is a fixed set. It is
still possible for C to be a fixed set and not meet these criteria, and it is possible for C to
not be a fixed set if it meets this criteria. Sometimes it is more useful if the tool uses some
heuristics such as this, at the risk of occasionally being wrong, rather than only giving
information that is provably correct.

TODO #1:

Look at inputs/singleton/Singleton.java.

Draw the object model diagram by hand, using the Dot language, and save the output to
the file doc/manual.dot/singleton.dot. The build.xml script will automatically
convert it to a graphical file doc/manual.dot/singleton.png which will be
automatically included in doc/report.html.

Use the Msquare shape to represent a fixed set in Dot: eg, digraph g { fixed
[shape="Msquare"]; } .

TODO #2:

Enhance your ObjectModel.java until its automatically-generated picture is as close to
the manually-drawn picture as possible.

Your tool should identify the inputs/singleton/Singleton class as a fixed set.

TODO #3:

After you're done, look at the 2 pictures, and answer the question at the end of "Problem
6.4" in the doc/report.html file.

Problem 6.5: Function Table
Approximate time to completion: up to 30 minutes

TODO:

Look at inputs/functiontable/*.java

This is some non-trivial code that is large enough to be interesting, but small enough that
your tool should be able to draw a reasonable object model for it. This code has the
qualities discussed above that your tool can handle: arrays, no use of collections, and a
fixed set.

You do not need to know what this code does. As far as you're concerned, it's just an
input to your tool. If you are interested, here's a brief description: This code is used to
represent conditional probability tables in a Bayes net solver for 6.825. A conditional
probability table may be considered as a mathematical function that maps discrete input
variables to a continuous output variable (a probability). Since the input variables are
discrete, the entire domain of the function can be enumerated in memory (which is what
this code does). For example, the table describing an unbalanced coin might be
something like (HEADS=0.4, TAILS=0.6). This code uses arrays instead of the Java
collections classes because all of the data is totally ordered, immutable, and known at
object creation time: so arrays with binary search are feasible because the contents of the
arrays never changes, as well as being time and space efficient. The Compute class
contains a bunch of static methods that do various computations with these tables.

Run your tool to automatically generate an object model diagram for it. Don't worry
about the appearance of the diagram (it will be big and messy). You don't have to
examine the graph in too much detail. You don't have to compare the graph to the actual
code. This exercise is basically meant to stress-test your tool on a large input. If there are
glaring mistakes in the diagram, that means you have to fix your ObjectModel.java.

Problem 7
Approximate time to completion: up to 30 minutes

In problem 6, the Graphviz/Dot tool did the graph layout for you, so your program didn't
really need to have any data structures: it could just dump out the data as it was read in.
Now consider writing a tool such as Javadoc: one of the things that Javadoc does is
produce a textual rendering of a program's inheritance hierarchy (eg, hierarchy for
java.util). Therefore, such a tool must have some internal representation of the data it is
manipulating, so that it can be printed out in some specific order.

TODO:

Enhance your tool so that it produces a rendering of the hierarchy similar to the one
produced by Javadoc. What's important is the essential structure and ordering, not the
fancy formatting. Your tool should append the output onto the end of the .dot file.

For example, the output for one of the test might look something like this: (where the
hierachy output is appended to the end of the .dot file that your tool will produce)

 digraph ObjectModel {

 // The following 2 lines define the default NODE and EDGE
attributes
 node [shape="box", fontname="courier", fontsize="12"];

http://java.sun.com/j2se/1.4.2/docs/api/java/util/package-tree.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/package-tree.html

 edge [arrowhead="open", arrowsize="0.8", fontname="courier",
fontsize="12"];

 // Here are the actual nodes in the diagram...
 TheaterListing [shape="box", label="TheaterListing"];
 TheaterListing -> Object [arrowhead="empty"];
 Theater [shape="box", label="Theater"];
 Theater -> Object [arrowhead="empty"];
 Movie [shape="box", label="Movie"];
 Movie -> Object [arrowhead="empty"];
 Byte [shape="box", label="Byte"];
 Byte -> Number [arrowhead="empty"];
 Number [shape="parallelogram", label="Number"];
 Number -> Object [arrowhead="empty"];
 Object [shape="box", label="Object"];
 Movie -> Byte [label="thumbsUp",headlabel="!"];
 Theater -> Movie [label="movies",headlabel="+"];
 TheaterListing -> Theater [label="theaters",headlabel="+"];
 }

 // java.lang.Object
 // java.lang.Number
 // java.lang.Byte
 // yourtests.Movie
 // yourtests.Theater
 // yourtests.TheaterListing

The last 6 lines above are new.

In contrast to what your program was doing before, now your program needs to have
some data structures to model the input so that the output may be produced in the correct
order, etc.

Checking In
Sometimes, Eclipse doesn't realize that a file has been changed and therefore will not
commit your changes to the repository. To avoid this problem, make sure that you right-
click on the topmost "ps3" item (in the left window), and click REFRESH. Then right
click on it again, and click TEAM... then click COMMIT. You should be sure to check in
at least the following files:

• doc/report.html with your answers written in the spaces provided; as well as all
the *.dot files that you manually wrote or that your tool created.

• your code (ie, modifications to ps3.ObjectModels, and any other classes you
create)

After you're done, you should run validate6170 ps3 on Athena to make sure all
your files are checked in and that your Java files are compilable.

Grading
The grading of this problem is separated into four categories.

• 15 points - for questions 1, 2, 3, and 4
• 60 points - for question 5, and for the design and construction of your object

model extractor (needed for question 6 and 7)
• 25 points - for the questions about the object models your tool extracts (ie,

question 6 in doc/report.html)

Hints
Don't Panic! You will probably feel overwhelmed by this problem set the first time you
look at it. Some hints are available in the assignments section.

Errata
There are no known problems with the problem set thus far.

Q & A
This section will list clarifications and answers to common questions about problem sets.
We'll try to keep it as up-to-date as possible, so this should be the first place to look (after
carefully rereading the problem set handout and the specifications) when you have a
problem.

Further Reading
If you liked this problem set, you may be interested to read a little bit more about
program analysis. This reading is optional, and it will not help you with the problem set.

	Introduction
	How to Get Started:
	Problem 1 and Problem 2: Preliminary Exercises
	How to draw the diagrams:
	TODO:

	Problem 3: Compilation, Bytecode, and Virtual Machines
	Java Bytecode
	TODO:

	Problem 4: The BCEL library
	TODO:

	Problem 5: THINKING about writing a static analysis tool for
	TODO:

	Problem 6: Writing a static analysis tool for Java bytecode
	Problem 6.1: Arrays
	TODO #1:
	TODO #2:
	TODO #3:

	Problem 6.2: Collections
	TODO #1:
	TODO #2:
	TODO #3:

	Problem 6.3: Yourtests
	TODO:
	Bonus points:

	Problem 6.4: Singleton / Fixed Set
	Singleton / Fixed Set
	TODO #1:
	TODO #2:
	TODO #3:

	Problem 6.5: Function Table
	TODO:

	Problem 7
	TODO:

	Checking In
	Grading
	Hints
	Errata
	Q & A
	Further Reading

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

