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Abstract 

We present a functioning active sonar that leverages a novel signal processing ap­
proach to achieve rapid frame rates with low quality devices. By placing increased 
burden on the processing, what normally requires dozens of transmissions may be per­
formed with only one. 

Cheap ultrasonic transducers and receivers have been used in order to emphasize 
device-independence. Furthermore, home-brewed 2-bit analog-to-digital converters are 
used in lieu of more expensive options. The algorithm, by design, simply does not 
require the level of detail afforded by higher resolution sampling systems. 

On the digital front, the transmission, data gathering, processing, displaying, and 
even serial link-up have been fully pipelined in order to maximize frame rate. While 
only single object tracking is demonstrated reliably (due to the short range of the 
transducers), there exists near-full support in both the algorithm and the system to 
handle multiple objects. Display of these objects is possible from both top and frontal 
views. 

Various subtleties and optimizations - some highly nonintuitive, others virtually 
necessary for proper operation - have been discovered as well. We describe these in 
addition to the implementation. 

CONTENTS
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Overview 

SONAR - SOund Navigation And Ranging ­
was a technology first developed in the early 
20th century as a means to locate objects 
beneath water. The willingness of sound 
waves to significantly reflect off most surfaces 
has contributed to its dominance today as a 
means of localization in the seas. 

There are largely two categories of sonar: 
active and passive. Passive sonar is a “listen­
ing” system that simply attempts to localize 
the source of any sounds it hears. In military 
applications where stealth is a priority, this 
is often the only option. 

Active sonar, on the other hand, involves 
a more active role on the part of the detec­
tor. A pulse of sound, or a “ping” is emit­
ted with a transmitter, and reflections of this 
pulse are interpreted for the desired informa­
tion. To allow the project sufficient breadth, 
it was decided that an active sonar would be 
attempted. 

Traditional active sonars utilize well 
characterized devices and a procedure known 
as “beamforming” to emit highly directional 
pings. The time until the ping arrives back 
at the receiver can be used to determine the 
distance to the object. However, even under­
water (where sound travels roughly five times 
as fast) these delays are rather large - on the 
order of tens of milliseconds. Having to try 
all the different angles to paint a full picture 
only multiplies this delay. Eventually, this 
translates over to slow update rate. 

Our goal was to attempt to take care 
of this problem by reversing the scenario. 
Rather than sending out directional pulses, 
send out a omnidirectional ping (lessening 
stress on devices as well). Then, have an ar­
ray of receivers instead of transmitters and 
piece together the distances to each angle ­
all from a single transmission. In this way, 
frame rates can increase by orders of magni­
tude. See the theory section for more on this 
rather watered down explanation. 

A system was designed to fully exploit 
this approach and display it in a highly intu­
itive manner. Various processing and control 
modules fit into a fully pipelined system that 
determines where an object is in the field of 
view. A display unit (also pipelined) then 
takes this information and shows the object 
in a simplified frontal 3D view, or in a more 
traditional top view. 

2 Processing - Theory 

One has a very high degree of freedom when 
it comes to design of an active sonar system, 
when compared with passive sonar. The first 
decision that must be made is the one that 
distinguishes this design from most sonar 
systems: the use of multiple receivers instead 
of multiple transmitters. 

2.1 Multiple Transmitters 

Traditionally, multiple transmitters are 
placed in a linear array, not unlike that 
shown in Figure 1. If the transmitters are 
placed close enough to one another (half 
wavelength or less) one can send out highly 
directional pulses by properly choosing the 
phases going into each transmitter (see Fig­
ure 2 for an example angular distribution). 
This process is given the colorful name of 
“beamforming.” 

Since sound travels at a measurable speed 
and bounces off most objects fairly well, one 
can immediately formulate an algorithm for 
mapping the environment using beamform­
ing. A sine wave pulse is sent at one direc­
tion - say 0 degrees - and one measures the 
time until a reflection is heard. This time 
is proportional to the distance to the closest 
object at that angle. After hearing this re­
flection, another sine pulse may be emitted 
in another direction, and the process may be 
repeated until all angles are covered. 

Unfortunately, above ground sound trav­
els at 340 m/s, giving a time lag of 6ms per 
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Figure 1: Linearly Phased Array for Input or Output 

Figure 2: Sample Beamforming Distribution
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meter per angle. If the closest object is 4 
meters away, the minimum time for a full 
scan is 24ms times the number of trial angles. 
One cannot expect a frame rate faster than 
about a frame per second for any reasonable 
resolution. Not only is this extremely slow 
(the human eye detects flicker at 24fps) but 
unreliable (if objects move further away, the 
system can slow down significantly). 

Additionally, the constriction of plac­
ing extremely well characterized transmit­
ters within half a wavelength distance, raises 
the system cost. Rather than attempting to 
build a traditional system with these limita­
tions, Project Tunafish decided it would be 
more interesting to address these difficulties 
by shifting responsibility to DSP and clever 
manipulation of receiver spacing. 

2.2 Multiple Receivers 

What if, instead of sending out a seperate 
transmission in each direction, one sent them 
all out at once in an omnidirectional trans­
mission? With the use of multiple receivers, 
one could theoretically still extract the direc­
tional information from the signals. 

Assume there are two objects at different 
distances and angles. If one sends an omni­
directional ping, seperate reflections will be 
heard for the two different objects on each 
of the microphones. If the ping is short 
enough in time, each microphone will show 
two seperate pulses (one for each object). For 
each of these pulses, there is a distinct lag be­
tween arrival time to the different mikes. See 
Figure 1 - which applies to both transmis­
sion and reception - again for an illustration 
of these time delays (dcosθ). 

So, if these pulses are kept short and the 
objects do not overlap significantly distance 
wise, one can deduce the angle for either of 
the pulses after calculating its lagging be­
tween microphones. The distance is then 
obtained easily in the same way as in the 
multiple transmitter case (total delay since 

2.2 Multiple Receivers 

transmission). 
How to calculate the lags that will give 

us the angles though? The answer lies in the 
magic of correlations. Say one has two sine 
waves over several periods at some phase to 
one another. If he shifts one relative to the 
other, multiplies the two, and integrates the 
function that results, this is called a cross-
correlation. As it turns out, this function 
turns out a maximum value when the shift 
operation puts the sine waves in phase with 
one another. 

A similar principle holds with our pulses. 
If one correlates the pulses between the mi­
crophones with one another, a maximum will 
occur at the shift that reverses their inher­
ent phase shift (dcosθ). So one simply has 
to search for the maximum in these correla­
tions between the different microphones, and 
she can trace back to the angles from there, 
right? Not entirely. There is a very impor­
tant subtlety regarding this that actually has 
much broader impact on the process of beam-
forming in general. In the next section, we 
discuss both this problem and an elegant so­
lution that was discovered in the course of 
the implementation. 

2.3 Nonlinear Spacing 

We observed before that for sine waves, 
correlation maxima occur at the phase-
correcting lags. As it turns out, for signals 
that are finite length, this can be generalized 
using the fact that a signal’s autocorrelation 
observes a maximum at zero lag. Assum­
ing the pulsed sine waves observed at each of 
the microphones are simply shifted versions 
of one another (a seemingly reasonable as­
sumption), the maximum of the correlation 
will occur not only when their sines are in 
phase, but also when the modulating pulses 
are made to line up exactly. So, we should 
be able to uniquely identify any sized lag be­
tween the receivers. 

Only our reasonable assumption is not 
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at all reasonable for cheaper quality devices, 
like the ones we wished our system to work 
on, especially when one considers quanti­
zation noise. Large amplitude differences 
between the microphones are in fact quite 
present even for the most steady of objects. 
As it turns out, this completely destroys the 
possibility for detecting lags greater than the 
period of the sine wave in question - stuck at 
40KHz by the resonant ultrasonic transduc­
ers. Given the centimeter diameter of the 
receivers we deal with, the maximum angu­
lar range possible is limited to 40 degrees. 
Not very much. 

Amazingly, this is an identical problem 
to that faced by beamforming transmitters 
(see the multiple transmitter section). The 
requirement that the spacing between trans­
mitters be less than half a wavelength is the 
exact mathematical restriction we face, and 
for the same reasons. If transmitters are 
spaced more than this distance apart, mul­
tiple lobes are created (similarly to how one 
set of lags can be repeated for multiple angles 
taken by an object in our case). A funda­
mental limit to angular range? Not so fast, 
buddy. We’re from MIT, after all. 

Thus far, everything we have mentioned 
can be done with 2 transmitters or 2 re­
ceivers. The extra devices have been used 
essentially for added noise protection. Why 
not use them to combat this problem? As is 
often the case, the answer is sometimes more 
apparent when one looks at the problem in 
a different light. 

We recall that the lags are given by dcosθ. 
Plotting this over the angular range we are 
interested in, we have a cosine from 0 to 
π . Remembering however that we can only 
count on detecting phase differences and not 
the total lags, we recognize that lags off by 25 
µs (the period of a 40 KHz wave) will yield 
identical phase differences. So let’s say that 
angles A and B give the same lags for mics 1 
and 2. 

Now, suppose that mics 2 and 3 are 
spaced slightly further apart than 1 and 2. 
While it is true that more angles will now 
overlap (as the maximum lags have increased 
while the period is the same) we now have 
an interesting situation. Assuming that the 
2-3 spacing is not a simple integral multi­
ple of the 1-2 spacing, the angles that give 
the same 1-2 phase differences are guaran­
teed to give different 2-3 phase differences. 
The proof of this statement is left as an ex­
ercise for the reader. In short, we have de­
coupled the two sets of receiver’s lags so as 
to widen the range. 

The fact has been verified experimen­
tally: in the original equally spaced setup, 
observers standing out of the central angular 
range “wrapped” around to the center screen 
- exactly what one would expect (verification 
is another exercise for the reader). In the sec­
ond setup - decided upon after this analysis ­
the entire range of the transmitters (almost 
180 degrees) was represented with no such 
wrapping. See Figure 3 for a picture of the 
final layout used. Notice the irregular spac­
ing. 

A similar exploitation may be performed 
in beamforming systems with many trans­
mitters. If one spaces them greater than 
half a wavelength - one will certainly have 
multiple lobes. However, one can guarantee 
that only one of these lobes overlaps between 
all the transmitters by making them nonlin­
early spaced. If there are enough transmit­
ters, this essentially duplicates a “properly” 
beamformed signal without the need for a 
carefully fabricated array. 

It should be emphasized that while other 
solutions exist to this problem - most no­
tably the use of superior transducers and/or 
analog-digital converters - none can compete 
in terms of elegance, simplicity, and cost. 

2.3 Nonlinear Spacing 8
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Figure 3: Receiver Array 

3 Analog Interfacing 

Before jumping into the implementation of 
the processor, it is important to understand 
the analog-digital hybrid aspects of the de­
sign. Several novel techniques were explored 
here as well, most notably non-linear time-
variant reduction of the receiver’s resonance 
quality by means of the FPGA. See Figure 
4 for a schematic of the final circuitry for a 
single mic (we had 5). 

3.1	 Hardware Interface 

The hardware part of our project is mostly 
responsible for collecting data from our five 
microphones. This data starts out as a 40 
kHz waveform with an amplitude of about 10 
mV. We amplify the signal about 200 times, 
and then convert it to digital data. Our algo­
rithm works as well with sinusoids as it does 
with square waves, so using an 8 bit ADC 
would be wasteful since 2 bits would suffice. 
The quantization noise that is introduced by 
this reduction in resolution proved a severe 
problem early on, but was addressed by the 
nonlinearly spaced array. 

It is also important for us to have a high 
sampling rate (about 1 MHz), so whatever 
ADC we used would have to be very high per­
formance. We decided that the easiest way 
to meet these specifications with minimal 
waste would be to make our own ADC out of 
two comparators (for each microphone). The 
comparators would normally both output 0. 
One of them would output a 1 when the sig­
nal went above a certain threshold, and the 
other would output a 1 when the signal went 
below a certain threshold. The FPGA read 
the sensor data directly from the output of 
the comparators. We found that our custom 

ADC worked extremely well, and that the 2 
bit data was simple to gather, store and pro­
cess. 

3.2	 Non-linear Time-variant Q Re­
duction 

In addition to working on the digital aspects 
of our project, we also invested time in im­
proving the quality of our analog sensors. 
One of the largest problems was that a very 
short transmission pulse would result in a 
long response on our receivers. Specifically, 
our transmission lasts only for 6 cycles of 40 
kHz, but a reflection from an object could 
cause more than 40 cycles of oscillation on 
the ultrasonic sensors. We believe that this 
extended response was caused by the high Q 
of our receivers (the Q was about 40 accord­
ing to the datasheet). 

The Q is a problem because it makes the 
pulse associated with a single echo (object) 
extremely long. This means that a second 
object would most likely have an overlap­
ping pulse. Pulses from objects are much 
more difficult to process when they overlap, 
and since we ultimately did not solve the 
high Q problem, our system is limited to 
single object tracking. Ideally, the echoes on 
our receivers would be extremely short, thus 
making it unlikely that there would be pulse 
interference. 

We attempted to solve the overlap prob­
lem by lowering the Q of our sensors. How­
ever, simply lowering the Q by putting a 
small resistor in parallel with a sensor causes 
several problems. Most noticeably, it de­
creases the amplitude of the receiver’s re­
sponse. A lower Q also implies a larger 
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Figure 4: Analog Circuitry for 1 Mic


bandwidth, meaning that our ”ultrasonic” 
microphone would become sensitive to lower 
frequency sound, thus increasing the noise in 
our system. To avoid some of these issues, 
we tried a non-linear approach. 

Our method involves using the FPGA 
to count the number of oscillations on the 
receiver. Once the oscillation count reaches 
a critical number (after which more data 
would not help with signal processing), the 
FPGA sends a signal that causes a switch 
to close, effectively shorting the sensor out­
put to ground for a brief time. The goal is 
to cause the ultrasonic resonator to lose all 
its energy, and go back to the normal, non-
oscillating state. Thus, after a brief period 
of ringing, the microphone would be ready to 
accept new echoes without interference from 
the previous one. 

Although the concept seems simple, 
building a switch that can cause a reso­
nant tank circuit to stop oscillating without 

1Thanks to Harry Lee for pointing this out 

3.2 Non-linear Time-variant Q Reduction 

injecting some energy back in is fairly dif­
ficult. A typical discrete MOSFET switch 
stores enough energy in overlay capacitance 
1 to restart oscillations once the switch is 
open again. We could have experimented 
more with smaller JFET devices (less capac­
itance), but we ran out of time. 

10 
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4	 Processing - Implementa­
tion 

The processing conveniently breaks up into 
three portions, tellingly named the pre­
processer, the processor, and the post­
processor. A few details about the system 
need mentioning however. 

First of all, every portion of the system 
except for the post-processor is fully capable 
of tracking multiple objects. However, given 
analog difficulties with multipath elongation 
of pulses (see above), such a feature would 
only be reliable if the objects were more than 
half a meter apart. Considering the limited 
range of the system, it was decided that the 
post-processor would work with only one ob­
ject at a time for reliability’s sake. 

Thanks to efficient implementation of the 
processor, as it turned out the transmission 
and reception (25ms) was typically the bot­
tleneck in our system speed. Not a big prob­
lem however, since 40fps is well beyond the 
flicker fusion rate of the human eye, 24fps. 

4.1 Pre-Processing 

The pre-processor works in real time as data 
is collected. For the most part, its purpose 
is to seperate out pulses from different ob­
jects, and to identify whether these pulses 
are “valid” for processing. For instance, if 
the pulse from one microphone ends too close 
to the start of the same pulse in another mi­
crophone, the processor will spit out garbage 
if asked to process this region of the signals. 
Hence, each pulse is given a start time, end 
time, and five valid bits that identify which 
of the five microphones’ signals are valid for 
that pulse. This information is written to a 
pipelined BRAM for use by the processor on 
the next state cycle. 

4.2 Processing 

Processing is the heart of the system. Given 
a start and end time for a series of pulses, 
it finds the pulse most likely to be corre­
sponding to the object that is being tracked, 
and proceeds to find its angle. This is done 
by use of smaller lag-finding and correlation 
modules that are streamlined to perform the 
computations of interest. The max-lags re­
ceived from the lag-finder module are there­
after passed to the post-processor for inter­
pretation. 

4.3 Post-Processing 

Post processing serves two purposes. First 
of all, it converts the max-lags given it by 
the processor into distances and angles that 
the display module reads from memory. In 
doing so however, it also implements basic 
noise margins against sudden fluctuations. 

While the distance measurements were 
usually quite reliable, two distinct methods 
were attempted at converting from the max-
lags into angles. The first of these took the 
more intuitive look up table approach. Es­
sentially, if the lags fell into a 4-space “box” 
(one range for each of the 4 lags) defined for 
an angle, the object was said to exist at that 
angle. If multiple angles claimed responsibil­
ity, the data was thrown away. The ranges of 
these 4-space boxes were determined through 
an efficient calibration procedure. 

The second angle finding method found 
the “distance” to the characteristic lags as­
sociated with several different angles. The 
minimum of these was declared the angle of 
the object provided distance was below some 
noise threshold. We found the latter method 
to be far less reliable. 

Finally, the user was given some ability 
to trade off speed for noise resistance. Es­
sentially, an angle was forced to repeat itself 
a threshold number of times (as defined by 
the user) before it was declared as the ob­

11 
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ject’s new angle. It was found that this sim­
ply slowed down the system, which normally 
converged quite fast to the correct location 
of an object that had just finished moving. 

4.3 Post-Processing 12
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5 Module Summary 

See Figure 6 for a block diagram of the non-
display elements of the system, and Figure 5 
for a block diagram of the memory control 
elements. 

5.1 Double Buffering 

The sonar architecture places a number of re­
quirements on the way memory is organized. 
Most apparent is the fact that multiple in­
dependent modules need to access the same 
memories. For example, the data gathering 
module must write to the data memory, and 
processing module must read from it. In or­
der to make this possible without introduc­
ing complexity into every module that uses 
BRAMs, we use a wrapper module that con­
trols which module is currently ”controlling” 
which memory. As a result, the data gather­
ing block can be designed without consider­
ing the fact that the processor also needs to 
access the data memory. 

The various modules in the sonar project 
have a very sequential nature, meaning that 
information naturally flows from one block 
to the next. However, sequential process­
ing is unfavorable since each block must wait 
for the previous block to finish before it can 
start. For example, the processor cannot be­
gin work until the data gatherer has finished 
collecting information. To avoid this waiting 
and thus improve the speed of our system, 
we chose a more parallel approach. 

To achieve parallelism, there are two 
copies of every memory. So while the data 
gatherer is writing data to memory A, the 
processor is performing computation on the 
contents of memory B. When both are done, 
they switch memories. The control FSM de­
cides when this switching takes place, mak­
ing sure it happens only when all the blocks 
in the pipeline are done. 

In order to make the design of each mod­
ule in the pipeline simpler, the switching of 

memories is handled externally. As far as the 
module knows, it is always working with one 
BRAM. The details involved in both reading 
and writing to multiple memories must be 
hidden. 

When a module thinks it is writing to 
memory, it is actually changing wires belong­
ing to two BRAM wrappers. These changes 
only take effect if the block has ”control” of 
that BRAM. The control FSM sets these con­
trol signals appropriately. For example, it 
makes sure that the data gatherer and the 
processor are never working with the same 
memory. 

The control FSM also decides what hap­
pens when a module reads from memory with 
the help of a multiplexer. The mux makes 
sure that if a block is given control of a given 
memory, then it will read the output data 
from that memory. 

Together, these memory control systems 
allow modules to share memories and switch 
between them without any special consider­
ation. As a result, the entire system’s speed 
is improved and design is simplified. 

5.2 Controller 

The controller orchestrates when every mod­
ule in the sonar begins its work. The only 
inputs it requires are the done signals from 
each of the modules it controls. It must also 
carefully decide which module controls which 
memory, so that parallelism is possible with­
out conflict. 

5.3 Transmitter 

The transmitter creates a 40 kHz signal, 
which is the resonant frequency of our ul­
trasonic transmitters. The 3.3v square wave 
output is passed to an amplifier, and raised 
to 20v, so that the transmitter’s will have as 
long a range as possible. 
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Figure 5: The Block RAM Wrapper 

Figure 6: Main Block Diagram
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5.4 Data Gatherer 

This module samples data at a rate of 1 MHz, 
grabbing all the 2-bit sensors values at the 
same time. The data is written to mem­
ory, and also passed immediately to the pre­
processor. 

5.5 Mic FSM 

There is one Mic FSM for each ultrasonic 
sensor. It examines the data from its micro­
phone and finds out when a ”pulse” starts 
and ends, where a pulse is a portion of the 
signal that is non-zero. The information 
about a start and end are passed to the pre­
processor. 

5.6 Pre-processor 

The pre-processor’s goal is to isolate an area 
of interest in the long stream of bits coming 
from the sensors. It does this operation while 
data is being gathered. By using information 
from the Mic FSMs, the pre-processor finds 
areas of the signals where as many of the 
sensors are active as possible (the most reli­
able data), and records the location of these 
areas in memory. Each of these ”pulses” cor­
responds to one object in the environment. 

5.7 Processor 

The processor takes the data from the data 
gatherer, and the pulse information from the 
pre-processor and determines the location of 
an object in the field. The start location of 
a pulse determines the distance of the ob­
ject. The processor performs a cross correla­
tion and uses a lookup table like structure to 
determine the object’s angle. The final an-
gle/distance pairs are writen to memory for 
the display to use. 

5.4 Data Gatherer 

5.8 Max Lag Finder 

This module makes the correlator module 
find the correlation for each possible lag. It 
keeps track of the correlation with the high­
est degree of overlap (lag sum), and returns 
the corresponding lag to the processor. 

5.9 Correlator 

The correlator actually performs the cross 
correlation for a given lag on the data mem­
ory. It does all five correlations in parallel, 
using dual ported memory to read two values 
of the data at the same time. Thus, it can si­
multaneously do the multiply accumulate re­
quired for the cross correlation between sen­
sor 1 and 2, 2 and 3, and so on. 

5.10 Angle Extractor 

Given the maximum lags, this module finds 
the most likely corresponding angle. It com­
pares the lag values to those hard coded into 
a number of angle checking modules. If there 
is one match, the processor knows the ob-
ject’s angle. Multiple matches signify that 
the data is probably invalid. 

5.11 Angle Checker 

This module performs a simple check to see 
if the given lags fall within a certain range. 
The range is hard coded for every angle, with 
the values found empirically. 

5.12 Dumper 

This module takes data and sends it through 
the serial port using the RS-232 protocol. 
This entire part exists only for debugging; 
we use it to see what data is recorded from 
the sensors and what values our signal pro­
cessing modules come up with. Thus, the 
module sends out the contents of various 
memories and also the values of a few regis­
ters. The dumper is activated by a button, 
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and normal operation is temporally stopped 
while it is sending information. 

5.13 BRAM Wrapper 

This module makes double buffering and 
memory sharing completely transparent to 
the other modules that use BRAMs. 

5.14 Top, Front Conversion 

The converters take the angle/distance in­
formation from the processor and convert it 
to pixel information using sine and cosine 
lookup tables. 

5.15 Display 

The display reads the pixel information and 
puts it onto the screen. 

6 Testing and Debugging 

The key to testing and debugging our sys­
tem was the RS-232 module. In the first 
stage of our development, we used this mod­
ule to send sensor data from the BRAM’s 
on our lab kit to a computer. We developed 
an algorithm for locating objects from this 
real data. Had we tried to implement an 
algorithm without checking that the sensors 
behaved as we expected, the project would 
have never worked. Later on, as the signal 
processing core was coming together, we sent 
the intermediate results of our calculations 
to a computer along with the data being 
processed. In this way, we verified that the 
FPGA was producing the same results as 
our MATLAB code for the given set of data. 

It was very easy to test bench certain 
modules, especially those that performed 
calculations. We simply put numbers in and 
made sure the right numbers came out. The 
memory wrapper was the only module that 

was difficult to test because it involved so 
many different pieces working together. In 
order to sort through the dozens of relevant 
signals, we made extensive use of the $dis­
play keyword to print out what values were 
being read from which memory. Since it 
took a long time for certain bugs to appear, 
it was much easier to examine a few printed 
statements than scrolling through many of 
long signals. 

We found that the logic analyzer was un­
necessary for testing and debugging in our 
case. The signals worked exactly as pre­
dicted by ModelSim. 

5.13 BRAM Wrapper 16
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7 Display Block 

See Figure for a block diagram of the display 
unit. 

7.1	 Display Module 

The display module reads 6-bit RGB val­
ues from a display RAM and converts them 
to 24-bit values ready to be used by the 
VGA. To cut down on the amount of mem­
ory needed, the RAM contains RGB data for 
every pixel of a 320x240 display even though 
the actual display is 640x480 pixels. There­
fore, the main challenges in implementing the 
display module were making sure the RAM 
was read appropriately to display a 640x480 
screen and reading the next address while 
converting data from the current one. 

To get a 640x480 display from data meant 
for a 320x240, each pixel of the smaller dis­
play needs to be read four times. That is, 
one pixel of the smaller display becomes four 
pixels in the larger one. The RGB data for 
each pixel is stored in the RAM in the or­
der the pixels are drawn on the screen-left 
to right, top to bottom-so the pixel cnt and 
line cnt signals from the VGA controller can 
be used to address the display RAM. If the 
LSB of each of those signals is not used, then 
the VGA controller will draw each row and 
each column of the smaller display twice on 
the larger display. 

The data for a particular pixel in the 
320x240 display is at the address that is the 
pixel’s row number multiplied by the total 
number of columns plus the pixel’s column 
number. For example, the address for the 
fifth pixel in the fourth row (which means the 
row number is 3 and the column number is 4 
since the counts start at 0) is 3*320 + 4. To 
solve the problem of reading the next address 
of the RAM while displaying data at the cur­
rent one, the address that is sent to the RAM 
is calculated using one more than the current 
value of pixel cnt. When pixel cnt becomes 

greater than the number of the last column 
on the screen, the address is held at that of 
the first pixel of the next line so that the 
RGB data for the first pixel of the next line 
is ready when pixel cnt rolls over to zero. 

The conversion of the 6-bit RGB value 
in the display RAM to a full 24-bit RGB 
value depends on the mode of display (front­
view or top-view), which is selected by two 
switches on the lab kit. For the top view, 
all objects on the screen are the same color, 
so the nonzero RGB values in the RAM are 
all the same and are just concatenated with 
eighteen trailing zeros to form the VGA-
ready RGB output. For the front view, 
the six bits in the display RAM become 
the two MSBs for the R, G, and B sec­
tions, and zeros are concatenated to fill 
in the rest of the 24 bits. For example, 
the value 6’b001001 stored in the display 
RAM would become the 24-bit RGB value 
24’b000000001000000001000000. 

7.2	 Data Correction For Front-
View Module 

The t d conv front.v module reads data from 
the theta-distance pairs RAM (written by 
the Control Module) and converts it to RGB 
data for the front-view display that is written 
to another RAM, which is later read by the 
Display Module. Each address in the theta-
distance pairs RAM has a 16-bit value; the 
first 8 bits represent an angle, and the lower 
order 8 bits represent the distance at that 
angle. In the front view display, each ob­
ject is represented by a vertical bar on the 
screen. The closer an object is to the trans-
mitter/receiver array, the longer and wider 
its bar is, and the lighter its color is. 

The front view conversion module is im­
plemented as an FSM because of the multiple 
read and write operations needed to do the 
data conversion. A state transition diagram 
for this module can be found in Figure 8 . 
The FSM is idle (in the frconv START state, 
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Figure 7: Display Block Diagram
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which sets all outputs to zero) until an enable 
signal, called start fwrite, from the control 
module signals the FSM to begin convert­
ing data. Before the front view conversion 
module can write new data to the display 
RAM, all of the previous RGB data must be 
cleared (i.e. set to zero). The FSM switches 
between the blank mem state, which has a 
counter that addresses all locations of the 
display RAM one at a time and outputs a 
value of 0 to be written to all addresses, and 
the blank mem write state, which sets the 
write enable signal to the display RAM high. 
The write enable signal is only high when the 
FSM is in the blank mem write state to en­
sure that the address and data have settled 
before an attempt is made to write to the 
display RAM. 

When all addresses in the display RAM 
have been cleared, the front view conver­
sion FSM moves to the read tdpair state, 
which outputs an address to be read from 
the theta-distance pairs RAM. If the last ad­
dress in this RAM has been read, the FSM 
sends a done signal to the control module 
and becomes idle again (i.e. returns to the 
frconv START state) on the next rising clock 
edge. If the last address has not been read, 
then the next theta-distance pair is ready on 
the next rising clock edge, when the state be­
comes trig lookup. This state takes the top 8 
bits of the theta-distance pair (which repre­
sent an angle) and sends them to the cosine 
lookup table. On the next rising clock edge, 
the FSM goes to the find xcoord state, which 
calculates the x-coordinate of the object rep­
resented by the current theta-distance pair 
using the cosine data from the lookup table. 

Usually, the conversion of polar coordi­
nates (an angle and a distance) to a rectan­
gular x-coordinate is done by simply multi­
plying the distance by the cosine of the an­
gle. However, in binary, the conversion be­
comes more complicated because of the prob­
lem of how to represent non-integer values. 

7.2 Data Correction For Front-View Module 

In the cosine lookup table, values of the co­
sine function between -1 and 1 are mapped to 
8-bit values between -64 and 64. This 8-bit 
value is first multiplied with its correspond­
ing distance, which is represented by the 8 
LSBs of the theta-distance pair data from the 
RAM. The resulting signal, called dcostheta, 
is an absolute value, so if the incoming cosine 
value (which is a two’s complement number) 
is negative, it is converted to its magnitude 
(by flipping all bits and adding one) before 
being multiplied by the distance. 

The display needs to render objects less 
than 90 (which have a positive cosine value) 
relative to the transmitter/receiver array on 
the right side of the screen, and objects 
greater than 90 (and less than 180, which 
have a negative cosine value) relative to the 
array on the left side of the screen. An object 
at 90 relative to the array (that is, directly 
in front of it) will be displayed in the middle 
of the screen. In a 320x240 display, the mid­
dle of the screen has an x-coordinate (column 
number) of 159, so the value of dcostheta is 
added to 159 if the cosine is positive, and 
subtracted from 159 if the cosine is negative. 
Only bits 13 through 7 of dcostheta are used 
in the calculation of the x-coordinate because 
all bits except the MSB of the cosine value 
are like the numbers after the decimal point 
of a floating-point number, and by leaving 
out these lower order bits we are essentially 
truncating dcostheta to get a whole number 
that can be represented appropriately in bi­
nary. We only take up to bit 13 of dcos­
theta because we do not want to add a num­
ber to 159 that will make the sum greater 
than 319 (the maximum column number of 
the small screen) or less than zero (the min­
imum column number); therefore we restrict 
the added or subtracted number to be seven 
bits. 

After the x-coordinate is calculated, the 
FSM moves on to the prep pixdata state, 
which determines the 6-bit RGB value to 
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Figure 8: Front View FSM 

7.2 Data Correction For Front-View Module 20 



Tunafish 
Vinith Misra Miranda Ha 

be written to the display RAM based on 
the distance of the object from the transmit-
ter/receiver array. As mentioned before, the 
closer an object is to the array, the darker 
the color of the bar that represents the ob­
ject on the display. The length of the bar 
representing the object is also determined in 
this state. 

The next state, prep width, determines 
the width of the bar representing the ob­
ject. Then the init cntrs state sets to zero 
the values of the counters that will be keep­
ing track of what address is sent to the dis­
play RAM for writing the RGB data for each 
pixel. Finally, the write pixdata state writes 
RGB values to the appropriate addresses in 
the display RAM and returns to the FSM 
to the read tdpair state when the necessary 
data has been stored. The FSM will continue 
its conversions or return to the idle state de­
pending on if there are more theta-distance 
pairs to be read. 

7.3	 Data Conversion for Top View 
Module 

The t d conv top.v module reads data from 
the theta-distance pairs RAM and converts it 
to RGB data for the top-view display. In the 
top view display, each object is represented 
by a small square on the screen. The closer 
an object is to the transmitter/receiver array, 
the closer the square that represents it is to 
the bottom of the display screen. Objects at 
an angle less than 90 relative to the trans-
mitter/receiver array are drawn on the right 
side of the screen, and objects at an angle 
greater than 90 (and less than 180) relative 
to the array are drawn on the left side of the 
screen. An object at 90 relative to the ar­
ray (that is, directly in front of it) will be 
displayed in the middle of the screen. 

The front view conversion module is also 
implemented as an FSM, and it is essen­
tially the same as the FSM for the front view 
conversion through the trig lookup state. A 

state transition diagram for this module can 
be found in Figure 9. In the prep pixdata 
state for the top view conversion FSM, both 
the x- and y-coordinates of the object must 
be calculated. The x-coordinate is calculated 
the same way as it was in the front view con­
version module. The y-coordinate calcula­
tion begins similarly. The angle of the object 
(represented by the eight MSBs of the theta-
distance pair read from the RAM) is sent to 
a sine lookup table, and the 8-bit value that 
is returned is multiplied by the distance of 
the object to get the value of dsintheta. The 
dsintheta value is truncated like the dcos­
theta value was and then subtracted from 
230 (since we want the closest objects to be 
near the bottom of the screen) to obtain the 
y-coordinate. 

When the x- and y-coordinates have 
been calculated, the FSM transitions to the 
write pixdata states, each of which writes 
RGB data into the display RAM for one 
pixel of the 3x3 square (in the 320x240 dis­
play; this gets blown up to a 6x6 square in 
the 640x480 display) that represents the ob­
ject on the screen. After the last write state 
(write pixdata9), the FSM transitions to the 
read tdpair state, which will continue con­
versions or send the FSM back to its idle 
state, depending on if there are more theta-
distance pairs to be read. 
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Figure 9: Top FSM 
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Summary 

An original approach to active acoustic lo­
calization has been both proposed and im­
plemented. The improvements to traditional 
sonar include multiple order-of-magnitude 
speedup, and lack of reliance on device qual­
ity. A technique in beamforming that allows 
the use of large devices and roughly placed 
phase arrays was also discovered along the 
way. 

By means of a fully pipelined architec­
ture that “never rests,” the speed improve­
ment lent by the algorithm was exploited 
completely, making the pulse delay the lim­
iting factor in speed. 

A display module reads data provided 
it by the processing and data gathering el­

ements (pipelined) and displays its view of 
the field from a top view and a front view. 
The latter demonstrates perspective, chang­
ing the size and width of the object as it 
moves closer and further away. 

The system works well within a short dis­
tance range, after which point limitations of 
the transmitters attenuate the signal to be­
low the noise floor. 

Post-processing intentionally limited the 
system to single object tracking to deal with 
noise issues stemming from multiple path­
ways of reflection. 

Mathematical and implementation de­
tails have intentionally been left out of this 
paper for the sake of succinctness. The au­
thors may be reached for any comments, 
suggestions, or questions. 
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