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Abstract 

This report details the design and implementation of a fingerprint 
verification system. The system consists of two parts: an image acquisition module 
and an image verification module. The image acquisition module involved capturing 
an image of an inked fingerprint via a web camera and transmitting that image 
through a video decoder onto a block RAM in the 6.111 lab kit. Using the stored 
image, the image verification module involves verifying the image via image 
processing filters to find a match in a pre-formed print database. The image 
verification module was completed while the image acquisition module was not 
completed due to wiring and timing errors.  
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I. Introduction 

Despite the multitude of personal identification methods currently in practice, 
fingerprint verification has traditionally been considered one of the most reliable methods 
available. Typically, fingerprint verification has been manually conducted by experts in 
print identification, which creates a significant backlog of work due to the tedious and 
time-consuming task of the manual identification. Consequently, autonomous fingerprint 
verification systems are in high demand for a wide range of applications that cannot use 
the manual verification process. These applications include access control, security 
verification, as well as the more commonly known criminal identification.  

An autonomous fingerprint verification system takes advantage of many features 
of the ridge topology of the fingerprint. In particular, verification systems focus on the 
the minutiae of the fingerprint. The most commonly examined minutiae are endpoints 
and bifurications. Fingerprints are obtained by a sensor or a camera and preprocessed to 
obtain the minutiae of interest. The following matching stage uses the minutiae of interest 
to establish a correlation between the sample print and a print in a database.  

For our final project in 6.111, we focused on implementing a robust fingerprint 
verification system with a small database. As a part of this design project, we researched, 
planned, and implemented our fingerprint verification system using the 6.111 lab kit and 
a web camera obtained through resources available in 6.111. This report details our 
design and implementation of our system.  
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II. Design Overview 

This fingerprint verification system is composed of two modules: an image 
acquisition and image verification, both of which are detailed below.  
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Figure 1. Block Diagram of Fingerprint Verification System 

III. Image Acquisition Modules 

To acquire an image of the fingerprint, a web camera provided by the 6.111 
laboratory was used to capture an image of an inked print. Through the video decoder file 
provided by the 6.111 staff, the inked image was stored in the ZBT. However, only one 
frame of the print image was needed. In order to store just one frame of the image in the 
ZBT, a button on the lab kit was used to trigger a freeze mode on the video decoder. Via 
button zero on the lab kit, the signal triggered causes the ZBT to hold the last frame 
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captured from the camera. This mode is shown in the state transition diagram on the 
following page. 

After the last frame of the print image is stored on the ZBT, the image is 
transferred to an asynchronous FIFO. This step was needed in order to synchronize the 
clocks of the image acquisition and image verification modules. The camera required the 
image acquisition module to run at a 65 Mhz clock while the image verification module 
ran at the 31.5 Mhz clock for its image processing procedures. The asynchronous FIFO 
allows the image to be stored at 65 Mhz into memory and then later read at the 31.5 Mhz 
clock. 

Finally, the image was to be transferred to a block RAM in order to allow the 
image verification module to access the print sample. In addition, several block RAMs 
were to be created in order to create the small database needed for meaningful 
functioning. However, this step could not be achieved. In the following sections on 
debugging the image acquisition module, the difficulties in achieving this task will be 
detailed. 

The following block diagram gives a quick visual overview of the image 
acquisition module. 

Figure 2. Block Diagram of Image Acquisition Module 

Camera/ 
Video 
Decoder 
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SRAM FIFO 

Block SRAM 
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A. Camera and Video Decoder 

The camera captured images via the web camera and transmitted them to the 
ADV7185 on the 6.111 lab kit. Using the video decoder code provided by the 6.111 staff, 
the print image was stored into the ZBT RAM. However, the code needed to be modified 
in order to store only one frame of the print image. The code provided by the 6.111 staff 
essentially allowed for streaming video via the web camera, but the image acquisition 
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needed only one frame of this video. In order to accomplish this, button zero was used as 
a signal trigger to switch the write enable signal for the ZBT RAM. When button zero is 
pressed, the write enable signal for the ZBT RAM goes from low to high to stop the 
video decoder from writing to the ZBT and to allow the asynchronous FIFO to begin to 
read from the ZBT.  

This freeze mode was introduced into the initial data path of the image acquisition 
process because it would allow the user to correct the print for smudges and correctly 
orient the print for proper verification. 

The Verilog code for this part of the image acquisition process is found in the 
appendix to this report. 

always BLOCK 
RAM 

!wr_enIDLE 

on_off (button 0) FIFO 

STORE TO 
ZBT wr_en 

Figure 3. State transition diagram for control FSM 

B. Asynchronous FIFO image transfer 

A separate memory interface was made for the asynchronous FIFO created via the 
Coregen RAM generator in the Xlinx navigator. The following state transition diagram 
shows how the memory interface for the asynchronous FIFO operates. It essentially 
follows the memory interface FSM shown in Lecture 7. However, this is not the proper 
FSM for the asynchronous FSM because it did not correctly address the data from the 
ZBT. The correct FSM for the FIFO should take into account the need to wait two cycles 
for the data to be available from the ZBT, and it should store every fourth pixel on every 
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third line. The FSM and its accompanying Verilog code do not take these considerations 
into account. The code only stores every fourth pixel and does not allow two cycles 
before the data is available. Technically, the user would not know what pixel is actually 
being stored on the FIFO since it does not take into account these conditions.  

always 
WRITE_3 

Wr_en 
IDLE 

Wr_en WRITE_2 

WRITE_1 
Wr_en 

Figure 4. State transition diagram for FIFO interface 

C. Block RAM 

Via the Coregen RAM generator in the Xlinx navigator, the block RAM which 
would have stored the print image was created. In addition, the memory interface 
mimicked the interface created for the asynchronous FIFO was created. However, the 
block RAM never contained any data because the timing was not correct on the 
asynchronous FIFO to allow for proper image transfer.  

D. Debugging the Image Acquisition Module 

There were several problems with debugging the image acquisition module. 
Because the asynchronous FIFO FSM did not work properly, the image was never stored 
on the block RAM. Thus this module could not properly interface with the image 

8 



verification module. In addition, the initial storage onto the ZBT did not work properly 
for several days due to difficulties with the lab kit. After transfer to a different lab kit, the 
initial storage stage was debugged. Also the differences between the clocks did not 
enable facilitation of system integration.  

III. Image Verification 

The image processing portion of this project has three major stages.  In the first 
stage an edge detection filtering operation is performed on the original binary image of a 
fingerprint, which was 256x256 pixels. The second stage maps direction vectors onto the 
edges. Finally, the matching stage sums the direction vectors to generate a metric for 
comparing fingerprints.  Each of the three stages is designed as a minor FSM.  All of 
these are controlled by one major FSM.  The figure below shows the block diagram of 
the full system. 
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Figure 5. Block diagram for image verification module 
User interaction with the labkit for the image processing is limited to the switch 

panel, the enter button, and the button numbered zero.  The switch panel allows the user 
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to change views, adjust the threshold for the edge filtering (which will be explained in 
more detail later), and control the LED output.  Pressing enter starts the processing and 
pressing zero resets the system.  It is important to note that the reset function re-initializes 
the registers and the state machines, but does not clear the RAMs.  Each component of 
the system will now be described, beginning with the filters.   

A. Sobel Edge Detection Filter: 
The Sobel Edge Detection Filter performs two convolutions on the original 

fingerprint, one in each the horizontal and vertical direction.  The filters are of size 3x3, 
and are scaled as shown below. Note that the images below are drawn as they would be 
passed over the image, although the convolution algorithm is defined as using the filter 
mirrored over the origin.  Assume the “flip” step of the convolution’s “flip and slide” 
process has already occurred. 

Vertical Filter: | 1 | 0 | -1 | 
| 2 | 0 | -2 | 
| 1 | 0 | -1 | 

Horizontal Filter: | 1 | 2 | 1 | 
| 0 | 0 | 0 | 
| -1 | -2 | -1 | 

The value of the pixels lying in the designated locations, with the pixel being 
processed lying in the center of the filter, is multiplied by the given scale factor and the 
results are summed.  The original image was binary, so the range of values resulting from 
the filter is -4 to 4. The edge map is also binary, so there had to be some method of 
generating an “edge” or “no edge” signal. A simple threshold was chosen to do this.  
Any value above the threshold indicated that there was an edge, while a value equal to or 
below the threshold indicated that there was no edge. The threshold is input through the 
lowest two bits of the switch.  The switch setting at the start of the filtering operation 
designates the threshold. 

Usually, the results from the horizontal and vertical convolutions would be 
combined to form a single edge map.  However, the image resulting from combining the 
convolved images was misaligned.  This occurred because of the strictly positive 
threshold.  Comparing the magnitude of the filtered result to the threshold would have 
given a clearer combined image.  However, the high frequency of the edges in a 
fingerprint meant that there would be a very large number of edges in the final image if 
both the positive and negative values were kept.  For simplicity, only the positive values 
were kept, and the filtered images were kept separate as horizontal and vertical edge 
maps.   

The Sobel Edge Detection Filter was implemented as a FSM with 11 states.  Each 
state performs a single action, although it would be possible to merge some of the states 
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and maintain the same functionality.  Because this filter is designed as a minor FSM, it 
remains in the initial state until it receives an enable signal.  The FSM then enters the 
filtering routine and outputs a busy signal until the filtering has been completed.  The 
state transition diagram is drawn below, followed by an explanation of the states.   
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Figure 6. Sobel filter state transition diagram 

In state 1, the read address is stored in a register.  The next state sets this read 
address onto the ROM address bus. The third state reads the data presented by the ROM, 
and the FSM moves to state 4 where it updates the filter register.  The filter register holds 
all of the values within the 3x3 area covered by the filter.  At this point, the FSM checks 
if it has all of the filter values.  If so, it goes to the write process.  Otherwise, the FSM 
goes to state 10 where it sets the interrupt to indicate that the filter count should be 
incremented.  In the next state, the FSM pauses for the read address to be updated before 
it returns to state 1. 

The write process begins with state 5, in which the FSM sets the write address 
onto the edge RAM’s address bus.  The filter register is processed to determine both the 
horizontal and vertical filter results in state 6.  In state 7, the FSM puts those results into 
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the write registers, which will later be written into the edge RAMs.  If all 8 bits have been 
filled in, the FSM enters state 8 in which it presents the write registesr onto the data in 
buses and activates the write enable by pulling it low.  Following the write, or if the write 
did not occur, is the UPDATE_PIXEL state. Here the interrupt to increment the current 
pixel is set. If the pixel count has reached the end, the FSM has finished filtering and 
returns to the initial state.  If the filtering is incomplete, the FSM moves to state 10 and 
continues with the filtering process. 

This FSM instantiates two submodules to simplify the filtering operation.  The 
“byte_bit” submodule converts a pixel number into an address for the memory, and the 
bit location of that pixel number within that address location.  This function is useful for 
reading and writing individual bits, since the memories accessed with this FSM are 8 bits 
wide. The ‘byte_bit” submodule was used both for the data being read off of the ROM 
with the original fingerprint, as well as for the data being written to the RAMs containing 
the edge maps.   

The second submodule, “read_loc”, is responsible for updating the next pixel to 
be read. The filtering occurs over an image, which is laid out in 2D.  The memories are 
addressed one-dimensionally, however.  For an image of dimensions MxN, the relative 
pixel location can be converted into an address for the memory, keeping in mind that the 
image is indexed from the top left corner.  To move up or down one row, the value of N 
is subtracted or added, respectively.  Left or right transitions are simply -1 or +1, 
respectively. The “read_loc” module outputs the appropriate pixel location relative to the 
current pixel being written based on the location of the filter.  The filter is indexed as 
shown below. The current pixel is always scaled by zero, so its value is irrelevant and is 
not read. 

| 0 | 1 | 2 | 
| 3 |N/A| 4 | 
| 5 | 6 | 7 | 

B. Direction Filter 
The Direction Filter is another minor FSM, and it is very similar in operation to 

the Sobel Edge Detection Filter.  There are 4 filters for this FSM, and the filtering is 
performed on both the horizontal and vertical edge maps.  These are 5 point filters, and 
each filter isolates a direction vector, either horizontal, vertical, or +/- 45 degrees. 
Instead of summing the scaled values of each pixel, these filters are checking that all of 
the values under the pixel window are high.  The submodule “dir_filt” performs this 
check and assigns the appropriate output.  The filters are shown below, with the center 
pixel of each filter being the current pixel.   

Horizontal: 	 | * | * | * | * | * | 

 Vertical: 	 | * | 

| * |

 | * |
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 | * |
 | * | 

+ 45 degrees: | * | 

| * |


 | * | 

| * | 

| * | 

-45 degrees: | * | 

| * | 


| * | 

| * |


 | * | 


The FSM for the Direction Filter is set up almost exactly the same as the FSM for 
the Sobel Edge Detection Filter.  However, in the Direction Filter, the data is being read 
off of the edge RAMs instead of the ROM. Each edge map results in a separate direction 
map.  The state transition diagram can be seen below, but the description of the states is 
not repeated (see the description of the Sobel Edge Detection Filter states).   
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Figure 7. Direction Filter FSM 
There are a few differences between the Direction Filter and the Sobel Edge 

Detection Filter. First of all, the pixels being read now occupy a 5x5 grid rather than a 
3x3 grid, although not all of those pixels are used.  The submodule “read_loc5x5” is an 
updated version of “read_loc” that accounts for this.  The new index for this submodule is 
given below, with pixel number 12 as the one currently being filtered.   

|  0  |  1  |  2  |  3  |  4  | 
|  5  |  6  |  7  |  8  |  9  | 
| 10 | 11 | 12 | 13 | 14 | 
| 15 | 16 | 17 | 18 | 19 | 
| 20 | 21 | 22 | 23 | 24 | 

Because there are multiple directions that can result from this filtering, a nibble (4 
bits) was used to code the result on the direction RAMs.  This required the use of the 
“byte_nibble” submodule to address the direction RAMs.  This new submodule is similar 
to “byte_bit” but accounts for the fact that only two pixels can be encoded at each 
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memory address rather than eight.  The “byte_bit” submodule is still used to address the 
edge RAMs for the read operations. 

C. Match FSM 
The Match FSM is used to provide a measure for a future comparison of 

fingerprints. This is also a minor FSM, with both the busy and enable signals.  The 
image is divided into four quadrants, as show below.   

| 0 | 1 | 
| 2 | 3 | 

In each quadrant, the number of +/- 45 degree direction vectors are summed, 
resulting in 8 values on which to base the comparison.  This FSM needs to read each 
pixel on the direction RAM, and it takes advantage of the fact that the display code 
already reads out each pixel.  The Match FSM uses the current line and pixel counts to 
determine which quadrant it is in and then increments the appropriate counter based on 
the direction vector read at that location.  The state transitions are shown below.   
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MATCH FSM 	 Default values: 
BUSY = FALSE; 
CLEAR = !enable Not at top left 

of screen FALSE; 
All match_ints = FALSE; 

INIT: 0 

Reset conditions 	

ENABLED: 1 
enable 

Clear match counts 
BUSY = TRUE; 

CLEAR = TRUE; 

At top left of screen 

DONE: 3 	 GO: 2 

At end of screen Start match count: set 

Clear all interrupts interrupt for appropriate 

BUSY = TRUE; location 


BUSY = TRUE; 

Not at end of 
screen 

Figure 8. Major FSM state transition diagram  

The majority of the function of the Match FSM resides in the “GO” state.  The 
“ENABLED” state is necessary to generate an accurate count.  Upon receiving the enable 
signal, the FSM enters this state where it clears the current match-sum registers, and 
waits for the pixel and line count to return to the top left corner of the screen before 
proceeding.  

The “GO” state is held for one entire pass through the image.  A case statement 
operating on the quadrant location sets the appropriate interrupt for the current quadrant.  
In sequential logic, each match sum register holds its value unless that interrupt is high.  
If the corresponding interrupt is set, the nibble that was read off of the direction RAM is 
checked. If it equals the correct direction vector, the register is incremented.  Otherwise, 
the register continues to hold its value. 
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Each quadrant is 128x128 pixels, which would require 15 bits to store.  However, it is 
impossible for an entire quadrant to be made up of one direction vector, due to the edge 
detection pre-processing that occurred.  The LEDs are used to display the low 8 bits of 
the final match values.  As these can store at maximum a value of 255, they cannot be 
used as an exact count, but can be used to observe that the match sums are approximately 
correct. The switch is used to view the separate match-sum outputs.  The table below 
lists the corresponding match-sum output for each switch position.   

Table 1. Match-sum switches 
Switch[7:4] Match-sum output (LED off for a zero input) 
0 Quadrant 0, +45 degrees 

1 Quadrant 0, -45 degrees 

2 Quadrant 1, +45 degrees 

3 Quadrant 1, -45 degrees 

4 Quadrant 2, +45 degrees 

5 Quadrant 2, -45 degrees 

6 Quadrant 3, +45 degrees 

7 Quadrant 3, -45 degrees 

8-15; Defaults to zero, all LED’s are off 


D. Displaying Images 
There are two image display modules, imgdisp and imgdisp_dir, because of the 

different addressing that is needed for the binary images and for the images using nibbles.  
Both essentially do the same thing, however.  They cycle through the ROM or RAM 
addresses sequentially, reading out each pixel value and converting it into a 24-bit color.  
For the binary memories, a value of “1” displays as white, while a value of “0” displays 
as black. For the direction map RAMs, horizontal or vertical directions are displayed as 
blue. An angle of 45 degrees in the positive direction is displayed as green, while 45 
degrees in the negative direction is displayed as red, and no direction is displayed as 
white. For both image display modules, any pixel not within the display area in the 
center of the screen is displayed as MIT red. 

The final step in setting the actual VGA color is choosing which ROM or RAM 
color output to select. The “colorOUT” module selects a color based on the switch input.  
The table below shows the switch-memory mapping.   

Table 2. Memory mapping switches 

Switch[3:0] Memory Displayed 

0 ROM, original fingerprint image 

1 RAM, vertical edge filtered 

2 RAM, horizontal edge filtered 

3 RAM, vertical direction filtered 

4 RAM, horizontal direction filtered 

5-15 Green screen, invalid switch input 
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The “colorOUT” module also checks the enables on the edge and direction FSMs.  
If either of those enables is on, the screen is displayed as blue to indicate that the filtering 
operation is occurring. This is also done because the memories are being addressed by 
the filter FSMs, so the display would be incorrect.   

E. Control FSM (Major FSM) 
The control FSM manages all of the signals used by the submodules, as well as 

interfacing with the labkit. This major FSM is responsible for handling the operation of 
the three minor FSMs which implement the three stages of the image processing used for 
this project. The control FSM also instantiates the submodules that handle the memories, 
image display, and color output to the VGA.  Finally, the control FSM uses the four most 
significant bits of the switch to set the LED output to the appropriate match sum. 

The most important function of the control FSM is managing the data and address 
buses for the memories.  Each memory is being accessed by multiple modules, those for 
displaying the images and those for processing the images.  Since each module is 
adjusting the address for its own purpose, the control FSM is responsible for selecting the 
address to actually be put on the memory bus to avoid bus contention.  The enable signals 
sent to the filtering modules are used to do this.   

The control FSM has 8 states. There is a state for reset, in which initial conditions 
are set up. The FSM immediately moves from reset to the display state.  The display 
state is the default state for this FSM.  All of the enables are off, and the image display 
modules have control of the address buses. Once the user has pressed the enter button to 
start the filtering operations, the FSM enables the appropriate filter and moves to a wait 
state until the busy signal response from the minor FSM has gone low.  The FSM 
performs the Sobel Edge Detection Filtering first, then the Direction Filtering, and finally 
performs the Match–sum calculations.  All three minor FSMs occur in that order for 
every filtering operation, and the control FSM returns to the display state once the Match 
FSM has signaled that it finished.  The state transition diagram is below.   
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Figure 9. Match FSM state transition diagram  

F. Matching 
The final step to this project would be to perform the match using the match-sums 

generated by the Match FSM.  A database of images would be created, by scanning them 
in and storing them in RAM.  A test image would then be scanned in and filtered to 
generate the match-sum values.  Each of the database images would also be filtered using 
the same threshold and they would each have a corresponding set of match-sum values.  
The match-sum values of the test image would then be compared to the match-sum 
values of the database images.  If the test values were within a given threshold of one set 
of the database values, a match would be declared.  If there are multiple matches in the 
database, the database image with the set of match-sum values closest to the test image 
would be chosen.   
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IV. Conclusion 
This report detailed the image acquisition and image verification processes for a 

fingerprint verification system. While the system was not completely implemented, the 
lessons learned from this project showed the importance of good design planning and the 
need for early implementation in order to fully achieve a working digital design.  
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