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Abstract 
 

The purpose of this project is to demonstrate an advanced version of the classic arcade 
game Tetris.  Our version boasts a much more dynamic and random game-play experience than 
conventional implementations.  Users manipulate the falling objects as in the traditional version, 
but the entire game is also driven by music and projected onto a large screen using a laser raster 
system.   
 The audio-based elements of the game operate in the following manner: the drop rate of 
the game pieces is controlled by music frequencies and magnitudes.  The audio input to the 
system is connected to the AC97 audio decoder on the Labkit, which digitizes the analog signals 
and pass them into the FPGA for processing. 
 The video components consist of two display elements.  First is the VGA monitor 
displaying the Tetris game window and an audio visualization.  Second is the laser display, 
which interfaces with the core graphics output of the Tetris game by a separate laser controller 
module.  That module’s task is to rapidly modulate the output of the laser at appropriate times as 
to create a low resolution, scanning raster image of the Tetris playing field. 
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I. Background Overview 
 

 This project is a dynamic rendition of the classic arcade game Tetris.  A VGA monitor displays a 
frequency-based visualization in addition to the game itself, and the game also sends the video feed to a 
laser display system for synchronous projection onto a remote surface.  The Tetris game responds to real-
time audio input by changing the pace of falling blocks in response to the current background music.  
Essentially, the entire system is divided into four main components, as depicted below in figure 1: 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: System Overview Block Diagram 
 

Figure 2 illustrates the seven Tetris game pieces, which are conveniently denoted by the 
letters they resemble, namely I, T, O, L, J, S and Z.  Note that all pieces consist of four blocks. 

Figure 2: The seven game pieces. (Courtesy of Wikipedia) 
 
The player can manipulate these pieces with left, right, rotate, and drop maneuvers.  Scores are 
accumulated based on certain scenarios, such as settling a piece at the bottom.  The falling piece is chosen 
at random, and the drop rate is synced to the background music.   
 
 

II. Module Descriptions and Implementations 
 

Audio Unit (recorder.v, audio_processor.v, audio_fft.v, display.v) 
 
 The purpose of the audio module is to perform a real-time FFT (Fast Fourier Transform) on the 
current audio data, extract intensities of specific frequency-ranges, and use that information to control the 
speed of the falling Tetris blocks in the main game.  This was designed to create the effect of a 
“responsive” game environment where the current background music has a direct effect on the game play, 
where Tetris pieces fall faster during intense bass notes.  This feature has been implemented in many 
innovative audio visualization packages such as those used in modern software-based media players.  The 
block diagram of the Audio Unit is shown on the next page in figure 3: 
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Please see any image of Tetris pieces, 
such as http://upload.wikimedia.org/wikipedia/
commons/9/9a/Tetrominoes_letter_oriented.png

http://upload.wikimedia.org/wikipedia/commons/9/9a/Tetrominoes_letter_oriented.png
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Figure 3: Audio Unit Block Diagram 

 
In our implementation, the audio unit interfaces with the CoreGen FFT module and computes a 

1024 point FFT.  The magnitudes of the 16 lowest frequency ranges are displayed as bars of varying 
height on the VGA display, and the intensity of the frequency bucket covering the range 47-94Hz (low 
frequencies) is used to trigger changes in block drop speed.  The way this works is relatively simple.  If 
the magnitude of the frequency range described above exceeds a specific threshold, then the system 
flashes an LED on the Labkit and sends a faster game “pace” setting to the main Tetris engine.   

The 16 bar spectrum analyzer shown below depicts the current FFT results in real-time.  A red 
line on the left marks the threshold level which much be exceeded to trigger an “audio event” which 
affects game speed. 

 
Figure 4: The audio spectrum analyzer.  Frequency range is 0-752 Hz. 

 
Verilog module integration organization is quite straightforward.  The module recorder.v contains all the 
AC97-specific interface modules which are instantiates to create the low level audio IO connections.  The 
module audio_processor.v deals with instantiation of the 1024 pt FFT as well as frequency extraction and 
spectrum analyzer data formatting/scaling.  The module audio_fft.v is the FFT module created by 
Coregen.  Finally, the module display.v is a shared resource between the VGA system and the audio 
system, and is used to display both the Tetris game and the spectrum analyzer on the VGA display screen. 
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Game Engine Unit (minorfsm.v, majorfsm.v, cdfsm.v, etc.) 

 
Figure 5: Game Engine Unit Block Diagram  

 
 Figure 5 above illustrates the inner workings of the Game Engine Unit.  Individual 
modules are discussed in more detail below.  Some modules that have been instantiated many 
times within the modules are not shown for clarity, but they are also described below.  The Tetris 
game display is essentially a 25 by 10 array of blocks, which can be naturally represented by a matrix 
with the third dimension representing the block’s color.  Therefore, the state of the game is kept and 
updated in the three-dimensional array reg [2:0]map[0:24][9:0], an inferred memory at runtime.  
To get or set the color of a block, two indices are used to pinpoint its corresponding cell within map.  
Including void (black), all of the eight colors can be represented by exactly three bits.   
   
Minor FSM (minorfsm.v) 

 
Figure 6: Minor FSM State Transition Diagram 

 
 The Minor FSM is in charge of controlling the dropping piece, whose behavior is dictated by the 
state transition diagram in figure 6 above.  Two sets of coordinates are implemented, since a temporary 
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set is used to test the piece’s next movement tentatively just in case the player made an illegal move.  If so, 
the coordinates can then revert back to its previous, uncorrupted states with the other set.  During the 
Coordinate Update state, external inputs such as move left or drop are taken into consideration to 
determine the next coordinates of the piece.  In the next state, potential collisions (overlapping blocks) 
with the walls or other pieces are being checked.  If no collisions occur – implying that the external 
signals in Coordinate Update state were legal – the coordinates are then updated.  In Drop a Row, scores 
are updated if a new piece will be dropped, perhaps due to the previous piece hitting the bottom; else the 
piece by default moves down one row.  During Swap, the temporary set is updated with the permanent set, 
thereby updating it for the next tentative move.        
 
Major FSM (majorfsm.v) 

Clean

Wait

Game 
Update

Reset

clean_update

game_update

reset

reset

reset

 
Figure 7: Major FSM State Transition Diagram 

 
 The Major FSM consists of four states.  During the Reset state, all cells in map are reset to 
zero, thereby clearing the game state.  During the Clean state, the current blocks of the dropping 
piece are made void (drawn black) in order to eliminate a tracing effect for the next move.  Then 
execution enters the Wait state, and it waits for a high game_update to enter the Game Update 
state.  In that state, map is updated to reflect the next move.  In other words, the Clean-Wait-Game Update 
cycle erases the dropping piece’s last game state and updates map with its new position as well as any 
collisions between it and the settled pieces at the bottom. 
 
Randomizer (rand.v and rand.xco) 

The following figure illustrates the behavior of the CoreGen Linear Feedback Shift Register, 
which is used to generate pseudo-random numbers.   

 

 
Figure 8: Randomizer Waveform 
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When ce is enabled, pd_out outputs an eight-bit number every clock cycle.  When a new piece will be 
dropped, ce is enabled and the last three bits of pd_out is taken to determine the type of the new piece.  
If the output is 3’b000, which is void, the new type is assigned to the red vertical piece, as it is favorite 
piece of most Tetris fans. 
 
Rotational Modules (rotate_dia.v and rotate_ortho.v) 
 These two modules take in the coordinates of a block and the center of rotation, and outputs the 
new coordinates of the block rotated clockwise.  The center of location for each piece is also 
predetermined.  Whenever a piece is rotated, the blocks either does a diagonal rotation or an orthogonal 
rotation as illustrated in figure 9: 

 
Figure 9: The black circle is the center of rotation.  The letters denote the clockwise rotation sequence. 

 
For instance, the rotation sequence of the Z piece is shown below: 
 

 
Figure 10: The numbers are block labels.  For Z, block 3 is the center of rotation, blocks 0 and 2 

perform orthogonal rotations, and block 1 performs diagonal rotations. 
 

Signal Register Module (signal_reg.v) 
 The signal register retains a high signal (if any) during each game move duration.  In effect, 
multiple high signals during a game move duration is only counted once.   
 
Counter (counter.v) 
 The purpose of Counter Module is twofold.  The first is to set the speed of the game.  By taking 
in a 2-bit signal pace, the drop rate can be set to three different speeds with a mux: FAST (5 blocks/sec), 
MED (2 blocks/sec), and SLOW (1 block/sec).  The second purpose is to send various signals to the 
minor and major FSMs to trigger a sequence of events for each game move, which are listed in the 
following table: 

Table 1: Table of Counter Module Output Signals 
 

Signal Output To: 
clean_update major FSM 
coord_update minor FSM 

check_collision minor FSM 
drop_row_update minor FSM 
game_update major FSM 

swap minor FSM 
signal_reset minor FSM and signal_reg instances 

 
 
For the functions of these signals, please refer to the corresponding modules for more details. 
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 Self-Overlap Detection Module (self_overlap.v) 
 This module takes as input the four pairs of coordinates defining a game piece as well as the 
coordinates of the single block to be compared.  If the block is part of the game piece, hence the module 
name “self-overlap,” the module returns a high bit. 
 
Collision Detection Module (cdfsm.v) 

The Collision Detection module, cdfsm, calculates the distance a piece needs to drop when the 
drop button is pressed by simulating (for internal calculation, not shown on VGA) the block falling down 
block by block.  The variable temp_dist is added to the vertical coordinates of the piece to simulate 
falling temp_dist blocks downward.  The module then checks if the piece at the new location overlaps 
any settled pieces at the bottom.  To distinguish overlapping with itself at its original position with other 
settled blocks, the self-overlap module is instantiated for each of the four blocks.  Naturally, 
temp_dist increments until the piece either hits a settled piece or the bottom row.  At this moment, 
final_dist is set to temp_dist, and the game piece is moved down by final_dist blocks for the 
next game move.  Figure 11 illustrates an example: 

 
Figure 11: The simulated steps of the T piece are of a lighter grey shade.  The red block indicates self-

overlap, and the green blocks indicate collisions with the settled S piece.   
 
The following waveform depicts the state transitions among states that increment temp_dist and check 
for collisions.  Note the incrementing temp_dist. 

 
Figure 12: Collision Detection FSM Waveform 

 
Debouncer Module (debounce.v) 
 This module debounces and synchronizes external buttons signals on the FPGA. 
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VGA Display Unit (display.v, vga.v, rect.v) 

 
Figure 13: Block diagram containing VGA Display Unit in relations to other modules. 

 
The VGA Display Unit consists of two large modules, Display and VGA.  Figure 13 above shows 

both modules (lower right) in relation to other modules found in the Game Engine Unit. 
 

Display Module (display.v) 
This module instantiates all the rectangles composing the game window and spectrum analyzer 

on the VGA monitor.  A block’s color is determined by a case selection on the block’s corresponding 
three-bit color type stored in map.  The gaming window consists of 25 rows and 10 columns.  A 
screenshot of the VGA is shown in figure 14, with the Tetris game on left and spectrum analyzer on the 
right. 

:    
Figure 14: Screenshot of the VGA Display 

 
VGA Module (vga.v) 

The VGA module is responsible for providing various correct syncing and blanking signals, both 
horizontal and vertical, to the VGA display.  Most importantly, this module also outputs to several other 
modules a high update_frame signal with a pulse width of one pixel clock cycle whenever the vsync 
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signal goes low.  Other modules use this signal to prepare the next frame during the vertical blanking 
period between frames.  The timing diagram is shown below: 

 
 

Figure 15: VGA Timing Diagram 
 
The screen has 640X480 pixels, and the pixel clock generated by the DCM is 31.5 MHz, resulting in a 75 
Hz refresh rate.  The structure of the VGA Module code is more like a nested for loop: pixel_count 
increments from 0 to PIXELS-1 for each line, and line_count increments from 0 to LINES-1 for each 
frame.  
 
Rectangle Module (rect.v) 
 Given the upper left-hand corner coordinates of a rectangle, the width and height, and a color, this 
module determines if a given pixel falls within the rectangular region.  If so, the pixel is set to the input 
color; else, it is set to black.  Because all objects displayed on the VGA are composed of rectangles, this 
module essentially provides the display functionality at the lowest level. 
 
Laser Display Unit (display_enable.v, fsm.v, fancy_dots.v, scan_sampler.v) 
 

 
Figure 16: Laser Display Module Block Diagram 
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The laser display module was built to provide an alternate visualization of the Tetris game 
playing field.  The motivation behind this endeavor was primarily driven by the technical challenge it 
presented, but it was also reasoned that the demonstration of a long-range laser projection system would 
be a worthwhile endeavor in itself.  The display itself is based on a hybrid electro/mechanical mirror 
assembly which uses a Dremel motor to drive a 10-sided mirror head.  Laser light shines onto the head 
which spins at a variable rate, typically between 15-20 rpm.  As the head rotates, the laser is turned on 
and off at very specific times to create the effect of an images as the laser dot sweeps across the projection 
surface in two dimensions.  Persistence-of-vision from the bright laser dot enables users to perceive a 
continues image once the mirror head is spinning fast enough. 
 Since this mirror head assembly is powered by a simple DC motor whose RPMs fluctuate 
somewhat randomly, it is necessary to synchronize the modulation of the laser with the mechanical mirror 
head assembly.  This is accomplished through the use of two infrared emitters and detectors positioned on 
either side of the mirror head.  Holes have been pre-drilled in specific patterns around the mirror head so 
as to ensure that the infrared light is transmitted through the assembly at highly specific points during the 
rotation of the assembly.  This “break-beam” configuration outputs either a low voltage level when the 
infrared detector is exposed to the emitter, and remains high at other times.  This opto-mechanical setup 
effectively functions in much the same way as the horizontal sync and vertical sync pulses of a typical 
VGA display.  While seemingly intuitive, this component is absolutely critical to reliably displaying 
stable video data on the projection surface. 
 The entire assembly is shown below.  Note the two black-tipped IR photodiodes located just to 
the right of the aluminum mirror head.  The laser emitter is located just left of the top center.  The design 
is such that the laser shines towards the camera and bounces off each of the 10 mirrors in turn, ultimately 
projecting forwards as shown in a subsequent picture. 
 

 
Figure 17: The laser, spinning mirror head, and IR sync assembly. 

 

 
Figure 18: The laser display in operation, projecting two lines onto a remote surface. 
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As mentioned above, the laser is modulated at the appropriate times by the Labkit so as to create 
the effect of discrete pixels as the beam scans across each of the 10 mirrors, each of which is calibrated to 
a slightly different angle (approximately 0.5 degree increments).  A resolution of 10 x 25 pixels at a 
frame-rate of up to 30 fps was selected in order to optimize the Tetris aspect ratio – this is the classic 
configuration.  This also satisfies laser switching constraints (the laser can be modulated at up to 10kHz, 
and we push 7.5kHz at full frame rate). 

Below is an image of the laser display surface.  The test pattern for each column is an alternating 
series of on and off pixels.  10 lines should be visible (there is some overlap in this image), but this was 
mostly corrected for the final project demo. 

 

 
Figure 19: The projected laser raster test pattern prior to mirror alignment. 

 
As with the audio system, Verilog integration was reasonably straightforward.  The module 

display_enable.v is used for clock dividing purposes to give the laser modulation FSM appropriate enable 
pulses.  The file fsm.v handles laser specific control tasks such as modulating the laser in real-time, 
displaying appropriate “pixels” based map data from the Tetris engine using as an index the current laser 
x and y positions.  These coordinates are inferred from the hsync and vsync pulses mentioned above, 
along with extrapolated timings between sync pulses. The module fancy_dots.v allows for the display of 
arbitrary decimal display of binary values in the decimal range of 0-9999.  It is used to show the “Frames 
Per Second” (in the rightmost 4 ‘hexdisplay’ digit slots) that the mirror head is currently spinning at 
(averaged over 1 second).  The last module, laserscan_sampler.v, is concerned with debouncing and 
filtering the IR synchronization pulses for use in fsm.v.  This essentially helps limit the effects of IR noise 
and slightly improves sync capabilities overall. 

 
III. Testing and Debugging 

 
Game Engine and VGA Display 
 
Visual Testing and Debugging 
 Testing the visual elements were quite straight-forward, as the VGA display itself provided 
enough feedback for error detection and improvements.  Using the software design principle of spiral 
iterations, a static “screenshot” of the game display was first created with hard-coded positions and pieces 
of the blocks.  Then the move left, move right, and drop-one-row-per-time-interval functionalities were 
implemented.  Rotating a piece proved to be much harder; the simple way would be to mathematically 
multiply the piece’s current coordinates by a rotational matrix, but that was infeasible, as I was using 
unsigned representation.  Eventually, rotation patterns of blocks among the seven pieces were classified 
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into orthogonal and diagonal rotations, handled by the rotate_ortho and rotate_dia modules, 
respectively.  Despite the brute-force approach, both modules ended up working reliably.   
 
Non-visual Testing and Debugging 

Although most of the project could be tested visually, subtle bugs which were not visually 
intuitive required ModelSim simulations.  For instance, a timing issue was suspected in the interface 
between the random number generator and the game controller, since the shape of dropping piece did not 
match the correct color.  With ModelSim analysis, however, a cycle delay turned out to be the cause.  
Another module that required ModelSim simulation was the collision detection module.  Sometimes a 
piece would freeze or pierce through some settled blocks at the bottom, but with the waveform shown in 
figure 12, the sequence of FSM states that resulted the drop can be monitored. 

 
Internal Game Representation 
 The state of the game is kept and updated in the three-dimensional array  
reg [2:0]map[0:24][9:0], an inferred memory at runtime.  During the development stage, many 
issues became apparent, either involving map or caused by map; most were fixed, but two were unable to 
be resolved in time for check-off.     

Because I did not realize beforehand that Veriolog cannot port 3-D arrays between modules, I had 
to make significant changes to my original design during the development stage.  Even though having 
only one implementation of map greatly reduced the number of wires, changing the indices while setting 
or getting the colors of (sometimes non-adjacent) many blocks during “map sweeping” operations 
inevitably caused delays.  Furthermore, my first design of map involved heavily on variable bit selects 
within arrays, but errors stated that part-selects must be constant.  Fortunately, I was able to fix the 
problem by using indexed part selects, a new syntax added in Verilog Standard 2000.   
 
Enforcing Modularity 

Because both of us were working in parallel, we defined a simple interface during the initial 
design state in order to facilitate the merging process at the end.  To simulate signals from the other 
person’s module, switches were used.  For example, the speed of the game could be manually set with 
switches, thereby decoupling the game engine module from the audio module completely.  During the 
merging process, another switch was used as the mux selector bit to toggle between manual and audio 
inputs for the speed. 
 
Unresolved Issues 
 Two issues were unable to be resolved in time for check-off: occasional freezing during drop 
operations and eliminations of completed rows.  The first one was particularly hard to debug, since a 
piece only froze roughly one in four times.  In view of the algorithm used to calculate the dropping 
distance, we suspected that the blocks froze because it thought there exists another block right beneath it.  
Given the fast changes in indices while reading and writing blocks, glitches and delays were possible.     

The second problem involved elimination of full rows.  Row elimination could not be 
implemented due to multi-source errors.  Using only one map would be extremely tricky, since that would 
involve generating new data from old data on the map and then rewriting those old data with the new data.  
Thus, an algorithm was devised to implement a second map, map2, that uses map to generate the state 
after full rows are eliminated, and then swapping its contents back into map.  Theoretically, the algorithm 
precluded more than one source pointing to each cell, but perhaps due to dynamic allocation of cell 
locations (indices used to write into map2 were represented by variables, since they could not be pre-
determined), the FPGA mistook that as multi-sourcing.   
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Audio Processor and Laser Display 
 
FFT Interfacing 
 A major challenge in developing the Audio Processor module was related to interfacing 
difficulties with the Coregen FFT Module.  Although the data sheet for this module was itself highly 
detailed, it was still unclear how the data should be formatted before feeding it into the FFT module and 
how the output data should be processed.  Moreover, the entire process was complicated by the somewhat 
confusing coregent configuration GUI which didn’t map exactly to the module’s datasheet in some 
instances due to minor typos in pin-out labeling. 
 Nonetheless, I was eventually able to get the module working and integrated with my system as it 
was intended.  Several of the problems and solutions are presented below. 
 The first problem I encountered was that coregent would not instantiate the FFT.  After struggling 
for a hours with naming schemes and computer configurations, it was pointed out that I had a filename 
with a space somewhere down the directory tree.  Fixing the issue was as simple as replacing the space 
with an underscore.  Determining that this was the problem, however, was very nontrivial and required 
me to seek advice from a number of different people before the solution was found. 
 Next I had difficulties with clocking the FFT.  At first I had a slight typo in my clock signal 
which Verilog did not catch, resulting in no data output despite all my attempts at probing signals. 
 Once these problems were sorted out and I started receiving real-time FFT data, I experienced 
difficulties with input magnitude scaling and frequency ranges, and it took some tweaking to normalize 
the signals and extract meaningful data from the FFT.  Ultimately, this required me to use 1024 buckets as 
opposed to the initial plan of 16.  Of the 1024 buckets, I found the most meaningful data was encoded in 
the lower 16 buckets, due to the fact that the vast majority of audio data is represented in the sub kilohertz 
frequency range.  Moreover, the magnitudes of these data had to be scaled appropriately in order to 
display correctly since the human ear response is nonlinear with a preference for the mid and low 
frequencies contained in typical audio data. 
 These issues were eventually sorted out, but the above problems encountered along the way 
resulted in unexpected delays in the overall project, compressing the schedule with which we had 
allocated time to system integration.  As a result, we nearly ran out of time at the end. 
 
Laser Scan Synchronization 
 In theory the laser scan synchronization was simple, and was designed in the following way: a 
vsync pulse is triggered once per revolution to signify the start of the scan, and hsync pulses trigger every 
time the laser starts scanning on a new mirror (of the ten total) so as to synchronize the display at the start 
of each column, since the laser scans top to bottom, left to right. 
 During manual slow-speed testing, these pulses and synchronizations work flawlessly.  However, 
during full frame-rate operation (15-20fps), mechanical vibrations arose and created a situation in which 
the labkit periodically missed hsync pulses 1-2 times per second, resulting in a “lateral jitter” or 
seemingly random frame shifts from side to side.  The result of this was a somewhat nauseating effect 
which somewhat degraded the quality of the overall laser display, but it was posited that a future robust 
implementation of the mechanical mirror head assembly would completely eliminate this situation.  As 
this was not the primary focus of 6.111, the problem was reduced as much as possible then simply 
ignored when it was determined that no amount of digital correction could compensate for a purely 
mechanical problem.  Despite this setback, the laser display did in fact work most of the way in which it 
was supposed to. 
 This problem was diagnosed with the aid of a digital oscilloscope, and a photo of the hsync and 
vsync traces is shown below.  Note that the vsync line pulse occurs once every ten hsync pulses when the 
system is operating correctly, which is the situation depicted in this image. 
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Figure 20: The hsync (bottom) and vsync (top) IR break-beam pulses on the oscilloscope. 
 

Laser/VGA Timing Differences 
 Due to the fact that the VGA display updates at 75Hz and the laser display updates at 15-20Hz, 
one cannot use the same signal to directly draw to both the VGA monitor and the laser display.  To 
correct for this, a complex buffering system was first designed in which the laser control module kept two 
local copies of the tetris map data in ram – one to update with the high speed (75Hz) map updates 
occurring in the Tetris game engine, and another dedicated to serving up the map data to the laser display 
FSM.. This idea essentially parallels the concept of common double-buffering practices, but it turned out 
to be unnecessarily complex for Verilog coding purposes.  Halfway through the development, a most 
simpler solution was identified, involving a continuous assignment between the primary map 
representation and the (x, y) coordinates of the current laser position.  It was confirmed that glitching 
would not occur since the combinational logic in this setup could at worst allow a pixel to be drawn one 
frame in the past, which at 75Hz is undetectable to any observer.  Thus, recognition of a simpler solution 
during development forced us to chain this part of our design, but we feel it was well warranted despite 
the fact that it occurred relatively late in the project development phase. 

 
 

IV. Conclusion 
 
 Overall we were quite satisfied with our project by the end.  Almost all the important elements 
worked successfully at the end, with the exception of a couple small details.  Although it became clear by 
the end of the term that nothing would be perfect, we were happy to have accomplished the bulk of a 
challenging project. 
 Specifically, all for major sections were considered a general success, though some to a greater 
degree than others.  This included the Audio Processor module, the Tetris Game Engine, the VGA 
Display System, and the Laser Display System. 
 Having worked for 2 months almost continuously on this project, we have realized a number 
thing about large-scale project development.  One, it is absolutely critical to design code before diving in 
and implementing functionality.  Second, it is important to think through all the small details before 
plunging in.  And third, it is necessary to have backup plans in the inevitable event that something fails to 
go according to plan.  Finally, it is also absolutely critical to factor in debugging time to the development 
process.  It is one thing to plan for design and implementation time, but it is equally important to assume 
that things won’t work perfectly the first time and consequently to budget substantial time for such issues 
as debugging, system integration and code merging. 
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 We are already much better prepared to approach difficult, large engineering problems.  Although 
we definitely made mistakes along the way, our 6.111 project overall can be considered a success.  As 
such, future engineering endeavors can expected to go a little more smoothly based on our experiences 
with 6.111. 
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