L6: FSMs and Synchronization
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I"lift  Asynchronous Inputs in Sequential Systems  lllir
What about external signals?
i mi W Can’t guarantee
—0 oO——— >
L Sequential System setup and hold
A\ times will be met!
Clock
When an asynchronous signal causes a setup/hold
violation...
| I 1l
D_ | L L
Clock _ [/ \_/ . _/ _/J \ o
Transition is missed Transition is caught Output is metastable
on first clock cycle, on first clock cycle. for an indeterminate
but caught on next amount of time.
clock cycle. Q: Which cases are problematic?

Courtesy of Nathan Ickes. Used with permission.
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I"lif  Asynchronous Inputs in Sequential Systems

All of them can be, if more than one happens
simultaneously within the same circulit.

ldea: ensure that external signals directly feed
exactly one flip-flop

Clocked
. Synchronous

e e I L Sequential System

_T_—oc DQX

Clock

AN

Courtesy of Nathan Ickes. Used with permission.

This prevents the possibility of | and Il occurring in different places in
the circuit, but what about metastability?
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Uity Handling Metastability I"ir

m Preventing metastability turns out to be an impossible problem

m High gain of digital devices makes it likely that metastable conditions will
resolve themselves quickly

m Solution to metastability: allow time for signals to stabilize

Likely to be Very unlikely to Extremely unlikely
metastable be metastable for to be metastable for
right after >1 clock cycle >2 clock cycle

sampling \ \ /
0 L ‘ 4’ Complicated
B

—0 o D QD QHD Q Sequential Logic
L System

Clock

How many registers are necessary?
m Depends on many design parameters(clock speed, device speeds, ...)
m In 6.111, one or maybe two synchronization registers is sufficient
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U Finite State Machines i

m Finite State Machines (FSMs) are a useful abstraction for sequential
circuits with centralized “ states” of operation

m At each clock edge, combinational logic computes outputs and next
state as a function of inputs and present state

inputs outputs
+ +
present next
State State

CLK

Introductory Digital Systems Laboratory

L6: 6.111 Spring 2006



I"ir Two Types of FSMs

Moore and Mealy FSMs are distinguished by their output generation

Moore FSM:

next

state
St

Inputs outputs
Xg---Xp, . Y = Tk(S)
CLK
present state S
Mealy FSM:
direct combinational path! outputS

Inputs

Xg-- X,

S
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Uity Design Example: Level-to-Pulse I"ir

m A level-to-pulse converter produces a
single-cycle pulse each time its input goes
high.

m In other words, it’s a synchronous rising-
edge detector.

m Sample uses:

O Buttons and switches pressed by humans for
arbitrary periods of time

O Single-cycle enable signals for counters

Level to
—L Pulse P p—
S Converter out P brod
: ...output P produces a
Whenever mput_ L goes |_ single pulse, one clock
from low to high... : :
CLK period wide.
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Uity State Transition Diagrams I"ir

m Block diagram of desired system:

Synchronizer Edge Detector
unsynchronized 5 Level to
user input Q D Q L Pulse Pp—

CLK

m State transition diagram is a useful FSM representation and design aid

“if L=1 at the clock edge, +— L
then jump to state 01.”

=1 L=1 Binary values of states

This is the output that results from
this state. (Moore or Mealy?)

“if L=0 at the clock edge,
then stay in state 00.”
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Uity Logic Derivation for a Moore FSM I"ir

m Transition diagram is readily converted to a

state transition table (just a truth table)

L=1

L=1

m Combinational logic may be derived by Karnaugh maps

s,s, fOr S;™

L\ 00 01 11 10

01]0:0:0

X

11]0:1:1

X

+-
s,s, fOrSg*

LN\ 00 01 11 10

01]0:0:0

X

111:1:1

X
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S,* = LS,
S, =L

curen | | Bt | o
S So|Lse se| P
0 o0|l0] O O] O
o ol1]lo0 1] o
- o 1/o|lo o] 1
o 1|1]1 1] 1
1 1]lo0lo ol o
1 1011 1] o
SforP
SN 0 1
0]l]0:X
P=S,S, 1L 0
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Mir Moore Level-to-Pulse Converter Mir

next
y 4 st;te Ay Ay
|)r(lpu);[S ) Comb. —I—V D Flip- Q Comb. ==mep OULPULS
o Logic Flops Logic Y = Tk(S)

CLK m>
present state S

S;"=LS, _<

SO+ =L P = S1SO

Moore FSM circuit implementation of level-to-pulse converter:

So" So

L D Q ) P
CLK4> Q
\ D
| Q
J St | s
_> Q
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Uity Design of a Mealy Level-to-Pulse I"ir

direct combinational path!

S

m Since outputs are determined by state and inputs, Mealy FSMs may
need fewer states than Moore FSM implementations

1. When L=1 and S=0, this output is

asserted immediately and until the
state transition occurs (or L changes). L j@
P
Clock
L=0 | P=0 State
Output transitions
immediately.
L=1|P=0 State transitions at the
clock edge.

2. After the transition to S=1 and as long
as L remains at 1, this output is O.
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Uiy Mealy Level-to-Pulse Converter

Pres. Next
State State Out

L O O
kr O -, O
k O O

L=0|P=0 L=1|P=0

o O+~ O

Mealy FSM circuit implementation of level-to-pulse converter:

D

S* S

Ol ©

D
CLK —>

S
m FSM’s state simply remembers the previous value of L

m Circuit benefits from the Mealy FSM’s implicit single-cycle
assertion of outputs during state transitions
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Uity Moore/Mealy Trade-Offs I"ir

m Remember that the difference is in the output:
O Moore outputs are based on state only
O Mealy outputs are based on state and input
O Therefore, Mealy outputs generally occur one cycle earlier than a Moore:

Moore: delayed assertion of P Mealy: immediate assertion of P
L__/ L__
P P \
Clock Clock \
State[0] State

m Compared to a Moore FSM, a Mealy FSM might...
O Be more difficult to conceptualize and design
O Have fewer states
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Uity Review: FSM Timing Requirements I"ir

m Timing requirements for FSM are identical to any generic
sequential system with feedback

Minimum Clock Period Minimum Delay

inputs outputs inputs outputs
+ + + +
present next present . next
State state State * state

CLK . ‘ CLK wemmminn> & SEESE o0 )
I\
-
T> T + Tloglc Tsu ch,cd T Tlogic,cd > Thold
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Uiy The 6.111 Vending Machine

m Lab assistants demand a new
soda machine for the 6.111 lab.
You design the FSM controller.

m All selections are $0.30.

m The machine makes change.
(Dimes and nickels only.)

m Inputs: limit 1 per clock
O Q - quarter inserted
O D - dime inserted
O N - nickel inserted

m Outputs: limit 1 per clock
O DC - dispense can
O DD - dispense dime
O DN - dispense nickel
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Uity What States are in the System? I"ir

m A starting (idle) state:

m A state for each possible amount of money captured:

m What's the maximum amount of money captured before purchase?
25 cents (just shy of a purchase) + one quarter (largest coin)

m States to dispense change (one per coin dispensed):

o> —GD— @D
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Uy A Moore Vender i

Here’s a first cut at the
state transition diagram.

See a better way?
So do we.
Don’t go away...

*
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U State Reduction

Duplicate states have:
m The same outputs, and

There are two duplicates

17 states 15 states
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m The same transitions D=1

> D=1

5 state bits 4 state bits

N=1

-

in our original diagram. D=1
N=1
*

D=1 ’
D=1

'41 ot
D=1 Al

Q=1
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y 4 Ay y 4
=) Comb. —'n—>D State Q Comb. )
Logic Register Logic
CLK=> .

FSMs are easy in Verilog.
Simply write one of each:

m State register
(sequential always block)

m Next-state
combinational logic
(comb. always block with case)

m Qutput combinational

logic block
(comb. always block or assign
statements)
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Verilog for the Moore Vender

module mooreVender (N, D, Q, DC, DN, DD,
clk, reset, state);
input N, D, Q, clk, reset;
output DC, DN, DD;
output [3:0] state;
reg [3:0] state, next;

States defined with parameter keyword

parameter IDLE = O0;

parameter GOT 5c = 1
parameter GOT 10c
parameter GOT_ 15c
parameter GOT_ 20c
parameter GOT_ 25c
parameter GOT 30c
parameter GOT 35c
parameter GOT 40c
parameter GOT 45c
parameter GOT 50c

Ne  Ne  Ne Ne Ne N N

R W 0o JO0 Ul b WDN -~

o ~

parameter
parameter
parameter

RETURN_ 20c
RETURN 15c
RETURN 10c

11;
12;
13;

parameter RETURN 5c = 14;

State register defined with sequential
always block

always @ (posedge clk or negedge reset)
if (!reset) state <= IDLE;
else state <= next;

Introductory Digital Systems Laboratory
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Verilog for the Moore Vender

Next-state logic within a
combinational always block

always @ (state or

case (state)
IDLE: if
else if
else
else

GOT_5c: if
else if

else

else

GOT 10c: if
else if

else

else

GOT_15c: if
else if

else

else

GOT 20c: if
else if

else

else
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N or D or Q) begin

(Q) next GOT_25c¢;
(D) next GOT_10c¢;
if (N) next = GOT 5c;
next = IDLE;

(Q) next GOT_30c;
(D) next GOT_15c¢;

if (N) next = GOT 10c;
next = GOT_5c;

(Q) next = GOT 35c;
(D) next = GOT_20c;

if (N) next = GOT 15c;
next = GOT _10c;

(Q) next = GOT 40c;
(D) next = GOT_ 25c;

if (N) next = GOT 20c;
next = GOT 15c;

(Q) next = GOT 45c;
(D) next GOT _30c¢;

if (N) next = GOT_25c;
next = GOT 20c;

GOT _25c: if (Q) next

else if (D)
else if

= GOT_50c¢;
next = GOT_35c;
(N) next = GOT_30c;

else next = GOT_25c;

GOT _30c: next =
GOT_35c: next =
GOT _40c: next =

GOT _45c: next =
GOT _50c: next =

RETURN 20c: next
RETURN 15c: next
RETURN 10c: next

RETURN 5c: next
default: next = I
endcase
end

IDLE;
RETURN 5c;

RETURN 10c;
RETURN 15c;
RETURN 20c;

= RETURN 10c;
= RETURN 5c;
= IDLE;

= IDLE;

DLE;

Combinational output assignment

endmodule

Introductory Digital Systems Laboratory

assign DC = (state == GOT 30c || state == GOT 35c ||
state == GOT 40c || state == GOT 45c ||
state == GOT_50c) ;

assign DN = (state == RETURN 5c);

assign DD = (state == RETURN 20c || state == RETURN 15c ||
state == RETURN 10c) ;
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U Simulation of Moore Vender i

==t wave - default E@EI

File Edit Wiew Insert Format Tools  Window

EEH& +B2EMH

2
-
Iil
ie=i
] &
o)
»
=
@
@
@
@

i .-{tb_ roaredclk 0
‘—': ,J' |:_|:|'__|'|'q|

k-

1000000 ps
Curzar 1 0ps

‘ K | v |F] | |
| 26452 ps to 993573 ps | Y

Output @

State
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I"ir Coding Alternative: Two Blocks Uiy

Next-state and output logic combined into a single always block

always @ (state or N or D or Q) begin

GOT 30c: begin
DC = 1; next = IDLE;
end
GOT_35c: begin

DC = 0; DD = 0; DN = 0; // defaults

case (state)

IDLE: if (Q) next = GOT 25c;
else if (D) next = GOT 10c; BENEN next = RETURN_5c;
else 1if (N) next = GOT_5C; end.
else next = IDLE; N GOT_40c: begin
DC = 1; next = RETURN 10c;
GOT 5c: if next = GOT 30c; end

GOT_45c: begin
DC = 1; next = RETURN 15c¢;
end
GOT 50c: begin
DC = 1; next = RETURN 20c;

(
else 1f (
else 1f (
else next

next = GOT_10c¢;

Q)

D) next = GOT 15c;

N)
= GOT _b5c¢;

GOT_10c: if (Q) next = GOT_35c; 3
else if (D) next = GOT 20c; en
else if (N) next = GOT_15c;

t =

RETURN 20c: begin
DD = 1; next = RETURN 10c;
end

else nex GOT 10c;

GOT 15c: if (Q) next = GOT_40c; RETURN 1 beqi
else if (D) next = GOT_25c; URN_15¢: egln_ 1 = RETURN
else if (N) next = GOT_20c; BN next = ORS¢
t =

end
RETURN 10c: begin
DD = 1; next = IDLE;

else nex GOT 15c;

GOT 20c: if (Q) next = GOT 45c;
~ else if (D) next = GOT_30C; end'
else if (N) next = GOT_25c; RETURN_5c: bedlg
else next = GOT 20c; B next = IDLE;
- end
GOT 25c: if (Q) next = GOT 50c;
~ else if (D) next = GOT_35C; default: next = IDLE;
else if (N) next = GOT:3OC; endcase
else next = GOT_ 25c; end
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I"ir FSM Qutput Glitching

m FSM state bits may not transition at precisely the same time

m Combinational logic for outputs may contain hazards
m Result: your FSM outputs may glitch!

...causing the
during this state ...the state registers may DC output to
transition... transtion like this... glitch like this!
@ o
Dot 0110 - 1| glitch
G :
assign DC = (state == GOT 30c || state == GOT 35c ||
state == GOT 40c || state == GOT 45c ||
state == GOT 50c);

If the soda dispenser is glitch-sensitive, your customers can get a 20-cent sodal

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory
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lllit Registered FSM Outputs are Glitch-Free

inputs

registered
outputs

present state S

m Move output
generation into the
sequential always
block

m Calculate outputs
based on next state

L6: 6.111 Spring 2006

reg DC,DN,DD;

// Sequential always block for state assignment
always @ (posedge clk or negedge reset) begin
if (!reset) state <= IDLE;
else if (clk) state <= next;

DC <= (next == GOT_30c || next == GOT_35c ||
next == GOT 40c || next == GOT 45c ||
next == GOT 50c) ;

DN <= (next == RETURN 5c) ;

DD <= (next == RETURN 20c || next == RETURN 15c ||
next == RETURN 10c) ;

end

Introductory Digital Systems Laboratory
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it Mealy Vender (covered in Recitation) Uiy

A Mealy machine can eliminate states devoted solely
to holding an output value.

D=1 * | DD=1
* | DN=1

Q=1|DC=1

D=1 Q=1|DC=1

Q=1]|DC=1 | DD=1

D=1 ”
D=1| DC=1 Q=1|DC=1

D=1

DC=1 *|DD:1

N=1 | DC=1 Q=1|DC=1
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U Verilog for Mealy FSM U

module mealyVender (N, D, Q, DC, DN, DD, clk, reset, state);
input N, D, Q, clk, reset;
output DC, DN, DD;
reg DC, DN, DD;

output [3:0] state;
reg [3:0] state, next;

parameter IDLE = O0;
parameter GOT 5c = 1
parameter GOT 10c =
parameter GOT 15c =
parameter GOT 20c =
parameter GOT 25c =
parameter RETURN 20c
parameter RETURN 15c
parameter RETURN 10c
parameter RETURN 5c = 9;

~e

U W N -
I~ ~

1l
o J O

A

// Sequential always block for state assignment
always @ (posedge clk or negedge reset)

if (l!reset) state <= IDLE;

else state <= next;
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always @ (state

DC = 0; DN =

case (state)
IDLE:

else

else
else

GOT 5c:
else
else
else

GOT_10c:
else
else
else

GOT 15c:
else
else

else

GOT_20c:
else

else
else
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Verilog for Mealy FSM

or N or D or Q) begin

0; DD = 0; // defaults
if (Q) next = GOT_25c;
if (D) next = GOT_10c;
if (N) next = GOT_5c;
next = IDLE;

DC = 1; next = IDLE;

if (D) next = GOT_15c;
if (N) next = GOT_10c;
next = GOT 5c¢;

DC = 1; next = RETURN 5c;

if (D) next = GOT_20c;
if (N) next = GOT_15c;
next = GOT _10c;

DC = 1; next = RETURN 10c;

if (D) next = GOT_25c;
if (N) next = GOT_20c;
next = GOT 15c;

if (Q) begin
DC = 1; next = RETURN 15c;

end
if (D) begin
DC

end
if (N) next = GOT_25c;
next = GOT_20c;

For state GOT_5c, output DC
IS only asserted if Q=1

1l; next = IDLE;

GOT_25c: if (Q) begin
DC = 1; next = RETURN 20c;
end
else if (D) begin
DC = 1; next = RETURN 5c;
end
else if (N) begin
DC = 1; next = IDLE;

end
else next = GOT_25c;

RETURN_20c: begin
DD = 1; next = RETURN 10c;
end
RETURN_15c: begin
DD = 1; next = RETURN 5c;
end
RETURN_10c: begin
DD = 1; next = IDLE;
end
RETURN_5c: begin
DN = 1; next = IDLE;
end

default: next = IDLE;
endcase

end

endmodule

Introductory Digital Systems Laboratory
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I"ir Simulation of Mealy Vender Uiy

=t wave - default g@gl

File Edit “iew Insert Format Tools  Window

FEHE sB@RA N KTeAI(xD &G QBRI ELEIE 3

#1 Atb mealydclk 0
L 1
- 1] |
F ]
£ 1]
'.:' A : atl
£ 4 DD 510 ' | | |
! [£ m | 1]

A1 b mealydstate 0

e G e A

I:‘,.IJT:;‘;E'l‘_'u' 1 i U pz
4 3 RN N
| 26641 ps to 912149 ps | y

o> o) __Goaw) ) Gl

Output @ ‘ ‘

(note: outputs should be registered)
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lir Delay Estimation : Simple RC Networks i

VELD Vin !

— 50% \X

\ t

1
Q_ VOUt ’
1

= VDD

R (2) Low-to-high (b) High-to-low

review R

® — oV

VDD
on
— C, — ——
T = Ron i v =01 —e")V

=5 | t,=In (2) 1= 0.69 RC
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i Clocks are Not Perfect: Clock Skew

CLout
é )
nJfp o Combinational l D Ql—
Logic
_T_ . ) —T—
I > Wire delay CIkD
Clk
CLK |
CLKD |
0>0

T> ch T Tlogic T Tsu -0
ch,cd + Tlogic,cd > Thold to

L6: 6.111 Spring 2006
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Uity Positive and Negative Skew I"ir
Tokt+ 0
In " Combinational "2 Combinational R3 Tewk
A A A M
CLK At At t
CLKl: CLKZ: CLK3 LK @ @
delay delay s, -
(a) Positive skew
Launching edge arrives before the receiving edge
In Rl Combinational Re inati R3 Tewk * 6
ot oo o ofwfomrmindl g e T
JAN JAN A CLK1
f teika - A towke B A teiks ]
delay delay CLK CLK2 ®<6» @
(b) Negative skew
Recelving edge arrives before the launching edge
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i Clocks are Not Perfect: Clock Jitter i

® Tek ®
cak ©| T @ | [*|lier
4
"iitte: ©
REGS Combinational
In ' Logic
ZAAN
CLK,[ |t tlogic
c-q» "cq, cd t1ogic, cd
tsu, thold
tjitter
— 2t.. + .+
TeLk 2tJltter>tc—q tIoglc tsu
or
Tt t

cC—¢ +tIogic Ty +2tjitter
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IMhir Summary Ihr

m Synchronize all asynchronous inputs
OUse two back to back registers

m Two types of Finite State Machines introduced
O Moore — outputs are a function of current state
O Mealy — outputs a function of current state and input

m A standard template can be used for coding FSMs

m Register outputs of combinational logic for critical
control signals

m Clock skew and jitter are important considerations
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