L5: Simple Sequential Circuits and Verilog

Acknowledgements:

Materials in this lecture are courtesy of the following sources and are used with
permission.

Nathan Ickes

Rex Min

L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory

ir Key Points from L4 (Sequential Blocks) v

Classification:

m Latch: level sensitive (positive latch passes input to output on high phase, hold
value on low phase)

m Register: edge-triggered (positive register samples input on rising edge)

m Flip-Flop: any element that has two stable states. Quite often Flip-flop also used
denote an (edge-triggered) register

Positive DB D Q—Q D D Q—Q Positive
Latch Register
I i
Clk Clk

m Latches are used to build Registers (using the Master-Slave Configuration), but
are almost NEVER used by itself in a standard digital design flow.

m Quite often, latches are inserted in the design by mistake (e.g., an error in your
Verilog code). Make sure you understand the difference between the two.

m Several types of memory elements (SR, JK, T, D). We will most commonly use
the D-Register, though you should understand how the different types are built
and their functionality.

L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory 2

T System Timing Parameters I"ir

()
nfp o Combinational D Q}—
Logic
+ _ g J +
Clk Clk

Register Timing Parameters Logic Timing Parameters

T, : Worst case rising edge Togic - Worst case delay
clock to g delay through the combinational
Teq g CONtamination or logic network
minimum delay from Togicca: CONtamination or
clock to g minimum delay
T,,: setup time through logic network
T, hold time

L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory 3

mir System Timing (I): Minimum Period

- N CLout
I Combinational l D O
Logic
+ L y +
Clk Clk
CLK ‘
Th Th
IN —i] ‘:‘*
T Isii
su ch ch
FF1 s
T:ng I-I-(""II‘(‘
CLout >
Tsuz

L5: 6.111 Spring 2006

T> ch T Tlogic T Tsu

Introductory Digital Systems Laboratory

ir System Timing (I1): Minimum Delay

CLout
é) l
Inlp o Combinational D Ql—
Logic
+ L y +
Clk Clk
CLK |
IN |-
FF1
R
T:q,?cdg‘
CLout H

L5: 6.111 Spring 2006

ch,cd T Tlogic,cd > Thold

Introductory Digital Systems Laboratory

T The Sequential always Block

m Edge-triggered circuits are described using a sequential

always block

Combinational Sequential
module combinational(a, b, sel, module sequential(a, b, sel,
out) ; clk, out);
input a, b; input a, b;
input sel; input sel, clk;
output out; output out;
reg out; reg out;
always @ (a or b or sel) always @ (posedge clk)
begin begin
if (sel) out = a; if (sel) out <= a;
else out = b; else out <= b;
end end
endmodule endmodule
a—1 a—1
out D QF— out
b —0 b —0
r>
sel sel clk

L5: 6.111 Spring 2006

Introductory Digital Systems Laboratory

i Importance of the Sensitivity List i

m The use of posedge and negedge makes an always block sequential
(edge-triggered)

m Unlike a combinational always block, the sensitivity list does
determine behavior for synthesis!

D Flip-flop with synchronous clear D Flip-flop with asynchronous clear
dule dff 1 d, cl b,
modu-e _sync_clear(crear module dff async clear(d, clearb, clock, q);
clock, q): . = —
. input d, clearb, clock;
input d, clearb, clock; output gq;
output qg; reg q;
reg g;
always @ (posedge clock) always @ (negedge clearb or posedge clock)
begin begin
if (!clearb) g <= 1'bO; if (!clearb) g <= 1’bO;
else q <= d; else q <= d;
end engm dul
endmodule endmodule
always block entered only at always block entered immediately
each positive clock edge when (active-low) clearb is asserted

Note: The following is incorrect syntax: always @ (clear or negedge clock)
If one signal in the sensitivity list uses posedge/negedge, then all signals must.

= Assign any signal or variable from only one always block, Be
wary of race conditions: always blocks execute in parallel

L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory 7

i Simulation (after Place and Route in Xilinx) Mir

* DFF with Synchronous Clear

=t wave - default

File Edit Wiew Insert Format Tools Window

BE% é%h&nﬁ B e I_E ® S @ B[R E‘.l[ﬁl_]&i 3¢

'_ .-"ttl dffsynu:.-’q

I aw
Curzor 1 258?1 'I pz
‘ » R

| 20093 ps to 457750 ps | y

* DFF with Asynchronous Clear

=i wave - default

File Edit View Insert Formakt Toaols Window

EHS % 2@ M r:saﬁLj I_J ® G @B

Atbdffasynedclock |0

1 /tb_difasyncid 1
f:! Ab_dffasync/clearb | 1

Ab_difaspncd St a B

Clear happens|on
Mow |0Ops | i e SEEEEEE g " falling) gdge of clearb ;
Cursor1 |37 ps
4 [» ;l_ . M i
| 19394 ps to 419555 ps | y

L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory 8

liifr Blocking vs. Nonblocking Assignments

m Verilog supports two types of assignments within always blocks, with
subtly different behaviors.

m Blocking assignment: evaluation and assignment are immediate

always @ (a or b or c)

begin
x =a | b; 1. Evaluate a | b, assign result to x
y=a " b " c; 2. Evaluate a”b”c, assign resultto y
z = b & ~c; 3. Evaluate b&(~c), assign result to z
end

m Nonblocking assignment: all assignments deferred until all right-hand
sides have been evaluated (end of simulation timestep)

always @ (a or b or c)

begin
X <= a | b; 1. Evaluate a | b but defer assignment of x
y <=a " b " c¢; 2. Evaluate a*b”c but defer assignment of y
Z <= b & ~c; 3. Evaluate b&(~c) but defer assignment of z
end 4. Assign x, y, and z with their new values

m Sometimes, as above, both produce the same result. Sometimes, not!

L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory

it Assignment Styles for Sequential Logic

Flip-Flop Based n—s L PSR ;73 PR [
Digital Delay < < Q
Line & & «
clk

m Will nonblocking and blocking assignments both produce
the desired result?

module nonblocking(in, clk, out); module blocking(in, clk, out);
input in, clk; input in, clk;
output out; output out;
reg gl, g2, out; reg gl, g2, out;
always @ (posedge clk) always @ (posedge clk)
begin begin
gl <= in; gl = in;
g2 <= ql; g2 = qgl;
out <= g2; out = g2;
end end
endmodule endmodule

L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory

10

if Use Nonblocking for Sequential Logic Illir

always @ (posedge clk) always @ (posedge clk)
begin begin
gl <= in; gl = in;
g2 <= ql; 92 = ql;
out <= q2; out = q2;
end end
“At each rising clock edge, q1, g2, and out “At each rising clock edge, q1 = in.
simultaneously receive the old values of in, After that, g2 =gl =in.
ql, and g2.” After that, out=qg2 =gl =in.

Therefore out = in.”

ql q2 _ ql g2
in—D QF~—D Q=D Q— out In D Qp—e—e— oOut

clk l_> |_> |_> clk |_>

m Blocking assignments do not reflect the intrinsic behavior of multi-stage
sequential logic

m Guideline: use nonblocking assignments for sequential
always blocks

L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory 11

1Ty Simulation

* Non-blocking Simulation

=+ wave - default

File Edit ‘iew Insert Format Tools BUGIREs]

SHS $RBMN N XS NE QS Q]

0 Jth_ronblocking/clk | 1 | i | |

Curzar 1
4 e

| 34909 ps to 749899 ps |

* Blocking Simulation

=t wave - default

Filz Edit View Insert Formatb Tools ‘Window

EEHS RN LK (v RS @EEF ELEIEE 3

#71 Aib bloc L:_Trm;.r' ik . — - 'r &+
0
S0

o 1000000 ps
Curgor 1 0ps
|+ 4 3
| 40512 ps to 409643 ps | =

L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory

12

Use Blocking for Combinational Logic i
_ _ dule blocking(a,b,c,x,y);
Blocking Behavior abc Xy e, . input ab,er Y
output x,y;
(Given) Initial Condition 11011 g: ,‘ =X reg x,y;
a changes; 10 11 always @ (a or b or c)
always block triggered 010 c = >—:y begin
x = a & b; 010 01 e
y =x | ¢ 01000 end
endmodule
NOﬂblOCking BehaVior a b C X y DeferrEd module nonblocking(a,b,c,x,y):
input a,b,c;
(Given) Initial Condition 11011 output X,y;
a changes; Teg X, ¥i
always block triggered 01011 always @ (a or b or c)
X <= a & b; 010 11 | x<=0 be;’clla&b;
y <= x | ¢; 010 11 |x<=0,y<=1 Lyl
Assignment completion 01001 endmodule

Nonblocking and blocking assignments will synthesize correctly. Will both
styles simulate correctly?

Nonblocking assignments do not reflect the intrinsic behavior of multi-stage

combinational logic

While nonblocking assignments can be hacked to simulate correctly (expand
the sensitivity list), it's not elegant

Guideline: use blocking assignments for combinational always blocks

L5: 6.111 Spring 2006

Introductory Digital Systems Laboratory 13

T The Asynchronous Ripple Counter I"ir
_ _ Count [3:0]
A simple counter architecture Count[0] Count[1] Count[2] Count[3]
O uses only registers L L L L
(e.g., 74HC393 uses T-register and D Q D Q D Q D Q
negative edge-clocking) ol 6,_3 Ol o
O Toggle rate fastest for the LSB l | | |
...but ripple architecture leads to T
large skew between outputs Clock)
D register set up to
always toggle: i.e., T
Register with T=1
Skew
" G
Count [3] .
Count [2] i Nl
Count [1. / A TN
Count[0] __ J P DD LTy
Clock _ /[__ [__f _J/ _J /[__
L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory 14

T he Ripple Counter in Verilog

Single D Register with Asynchronous Clear:

module dreg async reset (clk, clear, d, g, gbar);
input d, clk, clear;

Count [3:0]

output q, gbar; Count[0]

Count[1]

Count[2]

reg q; L_
D

B
always @ (posedge clk or negedge clear) Eg

begin
if (!clear)

55

—® Q¢ Q

Count[3]

5

—@ QH

g <= 1'b0; ‘
else g <= d; Countbar[0]
end clk

assign gbar = ~q;
endmodule

Structural Description of Four-bit Ripple Counter:

module ripple counter (clk, count, clear);
input clk, clear;

output [3:0] count;

wire [3:0] count, countbar;

dreg async reset bit0O(.clk(clk), .clear(clear), .d(countbar[0]),
.q(count[0]), .gbar(countbar[0])):;

dreg async reset bitl(.clk(countbar[0]), .clear(clear), .d(countba
.q(count[1l]), .gbar(countbarl[l])):;

dreg async reset bit2(.clk(countbar[l]), .clear(clear), .d(countba

.g(count[2]), .gbar(countbar[2]));

dreg async reset bit3(.clk(countbar[2]), .clear(clear), .d(countba

.g(count[3]), .gbar(countbar([3])):;

endmodule

L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory

Countbar[1]

r[1]),
r[2]),

r[3]1),

I
Countbar[2]

Countbar[3]

15

i Simula

=1 wave - default
File Edit ‘“iew Insert Farmat Tools Window

E% & B B @ E::,%Eﬂ I—E @l@,%m fﬁ L.lfiilj&fﬁéaﬂl-

0 ps to 2001458 ps |

=1 wave - default
File Edit Wiew Insert Format Tools Windows

=EHE § BRE R:?é"l_j I_J Q@QBH EF | L,LFEII_H:EE 3¢

" .-"tb npple.-"c:loc:k

945592 ps to 979566 ps |

L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory 16

i Logic for a Synchronous Counter Iir

m Count (C) will retained by a D Register
m Next value of counter (N) computed by combinational logic

c3|c2|ci1|N3[N2|[N1 c3 c3
0 0 0 0 0 1 Nl[l 1] 1 1] N2 0|1 1io
olo|l1]lo]l1]o0 ; !
0 0 0 0
ol1]lolol1]1 C1 c] 1] of o]
0 1 1 1 0 0 C2 c3 C2
1l olola1]lo]a1 N3| o | ol 2| 2
1ol 12l2]1]o0
1 1 lola2l12]1 cy © o 13
111110010 C2
Ci1 Cc2 C3
N1 :=C1 5oL > ol ool
v ol I]
N2 :=C1C2 +C1 C2 CLK :
= C1 xor C2 Zi (3 &
N3 :=C1C2C3 + Cl C3+C2 C3
:=C1C2C3 + (C1L +C2)C3
;= (C1 C2) xor C3 |

From [Katz05]
L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory 17

T he 74163 Catalog Counter I"ir

m Synchronous Load and Clear Inputs
m Positive Edge Triggered FFs
m Parallel Load Data from D, C, B, A

m P, T Enable Inputs: both must be asserted
to enable counting

m Ripple Carry Output (RCO): asserted when
counter value is 1111 (conditioned by T);
used for cascading counters

74163 Synchronous
4-Bit Upcounter

Synchronous CLR and LOAD
If CLRb=0then Q<=0

Else if LOADb=0then Q<=D
ElseifP*T=1thenQ<=Q+1
Else Q<=0Q

L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory 18

i Verilog Code for ‘163 Iir

m Behavioral description of the ‘163 counter:

module counter (LDbar, CLRbar, P, T, CLK, D,
count, RCO) ;
input LDbar, CLRbar, P, T, CLK;
input [3:0] D;
output [3:0] count;
output RCO;
reg [3:0] Q;

always @ (posedge CLK) begin

if (!CLRbar) Q <= 4'b0000; . :
priority logic for

else if (!LDbar) Q <= D; :
e SF (P BR T 6 e @ £ 1. control signals
end
:izigz ;ng: (_2[3]’ & Q[2] & Q[1] & Q[0] & T; RED geliet
=l - ’ by T input
endmodule

L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory 19

Simulation Ihr

=4 wave - default
File Edt View Insett Format Tools Window

EE i REH MLJ Ao e af [ﬁ BLE&LH E
g L g 1 g e

0 Joounter_th_ c:ountelvlffELK T | | il | g g
4 Joounter hqn.l.ll.uﬂiu tE 'ELF;hnr '

. (0 |:|:‘
Cursar 1 (100 pa

|r1r\

1

2432 ps to 2330952 ps |

Notice the glitch on RCO!

L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory 20

i Output Transitions T

m Any time multiple bits

Change_’ the counter OUtpUt Care is required of the Ripple Carry Output:
needs time to settle. It can have glitches:

Any of these transition paths are possible!

m Even though all flip-flops
share the same clock,
individual bits will change
at different times.

O Clock skew, propagation
time variations

m Can cause glitches in
combinational logic driven
by the counter

m The RCO can also have a
glitch.

Figure by MIT OpenCourseWare.

L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory 21

liT Cascading the 74163: Will this Work? Iir

Voo bits 0-3 bits 4-7 bits 8-11
I I I
T QaQsQcQp T QaQeQcQp T QaQeQcQp
P ‘163 Rcol—|P ‘163 RcoO P ‘163 Rrco
D CL LD D,DgD:.Dp| P CL LD D,DgD.Dp|rpP CL LD D,DgD.D,

T 7Y ?

CLK

m ‘163 is enabled only if P and T are high

m When first counter reaches Q =4’b1111, its RCO goes high
for one cycle

m When RCO goes high, next counter is enabled (P T =1)

So far, so good...then what’s wrong?

L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory 22

i Incorrect Cascade for 74163 i

Everything is fine up to 8'b11101111:

VDD‘L Y 71111 Y 0111] o000

T QaQsQcQp T QaQgQcQp T QaQsQcQp

P ‘163 Rco[—|P ‘163 RcoO P ‘163 RrcoO
> CL LD D,DgD.Dp|P CcL LD D,DyD-.D,| P CcL LD D, Dg DD,

T 7Y 7Y

Problem at 8'b11110000: one of the RCOs is now stuck high for 16 cycles!

VDD‘L T 0000 Y™ 1111 l o000

T QA QB QC QD T QA QB QC QD 1 T QA QB QC QD

P ‘163 Rcol—|P ‘163 ‘163 RrRco
> CL LD D,DyD.Dp| P CL LD D,DgD.Dp| P CL LD D,DgD.D,

W YT 7Y 7Y

L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory 23

i Correct Cascade for 74163

T

T

Master enable L

T

P QaQsQcQp

RCO
CL LD D, DgDcDp

T

P QaQsQcQp
RCO

> CL LD D, DgDcDp

m P input takes the master enable

O 0O

m T input takes the ripple carry

O 0O

assign RCO = QI[3] & QI[2] & QI[1l] & Q[0] & T;

L5: 6.111 Spring 2006

Introductory Digital Systems Laboratory

24

nir Summary IMir

m Use blocking assignments for combinational
always blocks

m Use non-blocking assignments for sequential
always blocks

m Synchronous design methodology usually used In
digital circuits
oSingle global clocks to all sequential elements

OoSequential elements almost always of edge-triggered
flavor (design with latches can be tricky)

m Today we saw simple examples of sequential
circuits (counters)

L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory 25

	L5: Simple Sequential Circuits and Verilog
	Key Points from L4 (Sequential Blocks)
	System Timing Parameters
	System Timing (I): Minimum Period
	System Timing (II): Minimum Delay
	The Sequential always Block
	Importance of the Sensitivity List
	Simulation (after Place and Route in Xilinx)
	Blocking vs. Nonblocking Assignments
	Assignment Styles for Sequential Logic
	Use Nonblocking for Sequential Logic
	Simulation
	Use Blocking for Combinational Logic
	The Asynchronous Ripple Counter
	The Ripple Counter in Verilog
	Simulation of Ripple Effect
	Logic for a Synchronous Counter
	The 74163 Catalog Counter
	Verilog Code for ‘163
	Simulation
	Output Transitions
	Cascading the 74163: Will this Work?
	Incorrect Cascade for 74163
	Correct Cascade for 74163
	Summary

