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ir Key Points from L4 (Sequential Blocks) v

Classification:

m Latch: level sensitive (positive latch passes input to output on high phase, hold
value on low phase)

m Register: edge-triggered (positive register samples input on rising edge)

m Flip-Flop: any element that has two stable states. Quite often Flip-flop also used
denote an (edge-triggered) register

Positive DB D Q—Q D D Q—Q Positive
Latch Register
I i
Clk Clk

m Latches are used to build Registers (using the Master-Slave Configuration), but
are almost NEVER used by itself in a standard digital design flow.

m Quite often, latches are inserted in the design by mistake (e.g., an error in your
Verilog code). Make sure you understand the difference between the two.

m Several types of memory elements (SR, JK, T, D). We will most commonly use
the D-Register, though you should understand how the different types are built
and their functionality.
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T System Timing Parameters I"ir
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Register Timing Parameters Logic Timing Parameters

T, : Worst case rising edge Togic - Worst case delay
clock to g delay through the combinational
Teq g CONtamination or logic network
minimum delay from Togicca: CONtamination or
clock to g minimum delay
T,,: setup time through logic network
T, hold time
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mir System Timing (I): Minimum Period
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ir System Timing (I1): Minimum Delay
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T The Sequential always Block

m Edge-triggered circuits are described using a sequential

always block

Combinational Sequential
module combinational(a, b, sel, module sequential(a, b, sel,
out) ; clk, out);
input a, b; input a, b;
input sel; input sel, clk;
output out; output out;
reg out; reg out;
always @ (a or b or sel) always @ (posedge clk)
begin begin
if (sel) out = a; if (sel) out <= a;
else out = b; else out <= b;
end end
endmodule endmodule
a—1 a—1
out D QF— out
b —0 b —0
r>
sel sel clk
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i Importance of the Sensitivity List i

m The use of posedge and negedge makes an always block sequential
(edge-triggered)

m Unlike a combinational always block, the sensitivity list does
determine behavior for synthesis!

D Flip-flop with synchronous clear D Flip-flop with asynchronous clear
dule dff 1 d, cl b,
modu-e _sync_clear( crear module dff async clear(d, clearb, clock, q);
clock, q): . = —
. input d, clearb, clock;
input d, clearb, clock; output gq;
output qg; reg q;
reg g;
always @ (posedge clock) always @ (negedge clearb or posedge clock)
begin begin
if (!clearb) g <= 1'bO; if (!clearb) g <= 1’bO;
else q <= d; else q <= d;
end engm dul
endmodule endmodule
always block entered only at always block entered immediately
each positive clock edge when (active-low) clearb is asserted

Note: The following is incorrect syntax: always @ (clear or negedge clock)
If one signal in the sensitivity list uses posedge/negedge, then all signals must.

= Assign any signal or variable from only one always block, Be
wary of race conditions: always blocks execute in parallel
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i Simulation (after Place and Route in Xilinx) Mir

* DFF with Synchronous Clear

=t wave - default

File Edit Wiew Insert Format Tools  Window

BE% é%h&nﬁ B e I_E ® S @ B[R E‘.l[ﬁl_]&i 3¢

'_ .-"ttl dffsynu:.-’q

I aw
Curzor 1 258?1 'I pz
‘ » R

| 20093 ps to 457750 ps | y

* DFF with Asynchronous Clear

=i wave - default

File Edit View Insert Formakt Toaols  Window

EHS % 2@ M r:saﬁLj I_J ® G @B

# Atbdffasynedclock |0

# 1 /tb_difasyncid 1
f:! Ab_dffasync/clearb | 1

# Ab_difaspncd St a B

Clear happens|on
Mow |0Ops | i e SEEEEEE g " falling) gdge of clearb ;
Cursor1 |37 ps
4 [ » ;l_ . M i
| 19394 ps to 419555 ps | y
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liifr Blocking vs. Nonblocking Assignments

m Verilog supports two types of assignments within always blocks, with
subtly different behaviors.

m Blocking assignment: evaluation and assignment are immediate

always @ (a or b or c)

begin
x =a | b; 1. Evaluate a | b, assign result to x
y=a " b " c; 2. Evaluate a”b”c, assign resultto y
z = b & ~c; 3. Evaluate b&(~c), assign result to z
end

m Nonblocking assignment: all assignments deferred until all right-hand
sides have been evaluated (end of simulation timestep)

always @ (a or b or c)

begin
X <= a | b; 1. Evaluate a | b but defer assignment of x
y <=a " b " c¢; 2. Evaluate a*b”c but defer assignment of y
Z <= b & ~c; 3. Evaluate b&(~c) but defer assignment of z
end 4. Assign x, y, and z with their new values

m Sometimes, as above, both produce the same result. Sometimes, not!
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it Assignment Styles for Sequential Logic

Flip-Flop Based n—s L PSR ;73 PR [
Digital Delay < < Q
Line & & «
clk

m Will nonblocking and blocking assignments both produce
the desired result?

module nonblocking(in, clk, out); module blocking(in, clk, out);
input in, clk; input in, clk;
output out; output out;
reg gl, g2, out; reg gl, g2, out;
always @ (posedge clk) always @ (posedge clk)
begin begin
gl <= in; gl = in;
g2 <= ql; g2 = qgl;
out <= g2; out = g2;
end end
endmodule endmodule
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if Use Nonblocking for Sequential Logic  Illir

always @ (posedge clk) always @ (posedge clk)
begin begin
gl <= in; gl = in;
g2 <= ql; 92 = ql;
out <= q2; out = q2;
end end
“At each rising clock edge, q1, g2, and out “At each rising clock edge, q1 = in.
simultaneously receive the old values of in, After that, g2 =gl =in.
ql, and g2.” After that, out=qg2 =gl =in.

Therefore out = in.”

ql q2 _ ql g2
in—D QF~—D Q=D Q— out In D Qp—e—e— oOut

clk l_> |_> |_> clk |_>

m Blocking assignments do not reflect the intrinsic behavior of multi-stage
sequential logic

m Guideline: use nonblocking assignments for sequential
always blocks
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1Ty Simulation

* Non-blocking Simulation

=+ wave - default

File Edit ‘iew Insert Format Tools BUGIREs]

SHS $RBMN N XS NE QS Q]

0 Jth_ronblocking/clk | 1 | i | |

Curzar 1
4 e

| 34909 ps to 749899 ps |

* Blocking Simulation

=t wave - default

Filz Edit View Insert Formatb Tools  ‘Window

EEHS RN LK (v RS @EEF ELEIEE 3

#71 Aib bloc L:_Trm;.r' ik . — - 'r &+
0
S0

o 1000000 ps
Curgor 1 0ps
|+ 4 3
| 40512 ps to 409643 ps | =
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Use Blocking for Combinational Logic i
_ _ dule blocking(a,b,c,x,y);
Blocking Behavior abc Xy e, . input ab,er Y
output x,y;
(Given) Initial Condition 11011 g: ,‘ =X  reg x,y;
a changes; 10 11 always @ (a or b or c)
always block triggered 010 c = >—:y begin
x = a & b; 010 01 e
y =x | ¢ 01000 end
endmodule
NOﬂblOCking BehaVior a b C X y DeferrEd module nonblocking(a,b,c,x,y):
input a,b,c;
(Given) Initial Condition 11011 output X,y;
a changes; Teg X, ¥i
always block triggered 01011 always @ (a or b or c)
X <= a & b; 010 11 | x<=0 be;’clla&b;
y <= x | ¢; 010 11 |x<=0,y<=1 Lyl
Assignment completion 01001 endmodule

Nonblocking and blocking assignments will synthesize correctly. Will both
styles simulate correctly?

Nonblocking assignments do not reflect the intrinsic behavior of multi-stage

combinational logic

While nonblocking assignments can be hacked to simulate correctly (expand
the sensitivity list), it's not elegant

Guideline: use blocking assignments for combinational always blocks
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T The Asynchronous Ripple Counter I"ir
_ _ Count [3:0]
A simple counter architecture Count[0] Count[1] Count[2] Count[3]
O uses only registers L L L L
(e.g., 74HC393 uses T-register and D Q D Q D Q D Q
negative edge-clocking) ol 6,_3 Ol o
O Toggle rate fastest for the LSB l | | |
...but ripple architecture leads to T
large skew between outputs Clock )
D register set up to
always toggle: i.e., T
Register with T=1
Skew
" G
Count [3] .
Count [2] i Nl
Count [1. / A TN
Count[0] __ J P DD LTy
Clock _ /[ \__ [ \__f _J/ _J /[ __
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T he Ripple Counter in Verilog

Single D Register with Asynchronous Clear:

module dreg async reset (clk, clear, d, g, gbar);
input d, clk, clear;

Count [3:0]

output q, gbar; Count[0]

Count[1]

Count[2]

reg q; L_
D

B
always @ (posedge clk or negedge clear) Eg

begin
if (!clear)

55

—® Q¢ Q

Count[3]

5

—@ QH

g <= 1'b0; ‘
else g <= d; Countbar[0]
end clk

assign gbar = ~q;
endmodule

Structural Description of Four-bit Ripple Counter:

module ripple counter (clk, count, clear);
input clk, clear;

output [3:0] count;

wire [3:0] count, countbar;

dreg async reset bit0O(.clk(clk), .clear(clear), .d(countbar[0]),
.q(count[0]), .gbar(countbar[0])):;

dreg async reset bitl(.clk(countbar[0]), .clear(clear), .d(countba
.q(count[1l]), .gbar(countbarl[l])):;

dreg async reset bit2(.clk(countbar[l]), .clear(clear), .d(countba

.g(count[2]), .gbar(countbar[2]));

dreg async reset bit3(.clk(countbar[2]), .clear(clear), .d(countba

.g(count[3]), .gbar(countbar([3])):;

endmodule
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i Simula

=1 wave - default
File Edit ‘“iew Insert Farmat Tools  Window

E% & B B @ E::,%Eﬂ I—E @l@,%m fﬁ L.lfiilj&fﬁéaﬂl-

0 ps to 2001458 ps |

=1 wave - default
File Edit Wiew Insert Format Tools  Windows

=EHE § BRE R:?é"l_j I_J Q@QBH EF | L,LFEII_H:EE 3¢

" .-"tb npple.-"c:loc:k

945592 ps to 979566 ps |
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i Logic for a Synchronous Counter Iir

m Count (C) will retained by a D Register
m Next value of counter (N) computed by combinational logic

c3|c2|ci1|N3[N2|[ N1 c3 c3
0 0 0 0 0 1 Nl[l 1] 1 1] N2 0|1 1io
olo|l1]lo]l1]o0 ; !
0 0 0 0
ol1]lolol1]1 C1 c] 1] of o]
0 1 1 1 0 0 C2 c3 C2
1l olola1]lo]a1 N3| o | ol 2| 2
1ol 12l2]1]o0
1 1 lola2l12]1 cy © o 13
111110010 C2
Ci1 Cc2 C3
N1 :=C1 5oL > ol ool
v ol I ]
N2 :=C1C2 +C1 C2 CLK :
= C1 xor C2 Zi (3 &
N3 :=C1C2C3 + Cl C3+C2 C3
:=C1C2C3 + (C1L +C2)C3
;= (C1 C2) xor C3 |

From [Katz05]
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T he 74163 Catalog Counter I"ir

m Synchronous Load and Clear Inputs
m Positive Edge Triggered FFs
m Parallel Load Data from D, C, B, A

m P, T Enable Inputs: both must be asserted
to enable counting

m Ripple Carry Output (RCO): asserted when
counter value is 1111 (conditioned by T);
used for cascading counters

74163 Synchronous
4-Bit Upcounter

Synchronous CLR and LOAD
If CLRb=0then Q<=0

Else if LOADb=0then Q<=D
ElseifP*T=1thenQ<=Q+1
Else Q<=0Q
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i Verilog Code for ‘163 Iir

m Behavioral description of the ‘163 counter:

module counter (LDbar, CLRbar, P, T, CLK, D,
count, RCO) ;
input LDbar, CLRbar, P, T, CLK;
input [3:0] D;
output [3:0] count;
output RCO;
reg [3:0] Q;

always @ (posedge CLK) begin

if (!CLRbar) Q <= 4'b0000; . :
priority logic for

else if (!LDbar) Q <= D; :
e SF (P BR T 6 e @ £ 1. control signals
end
:izigz ;ng: (_2[3]’ & Q[2] & Q[1] & Q[0] & T; RED geliet
=l - ’ by T input
endmodule
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Simulation Ihr

=4 wave - default
File Edt View Insett Format Tools  Window

EE i REH MLJ Ao e af [ﬁ BLE&LH E
g L g 1 g e

0 Joounter_th_ c:ountelvlffELK T | | il | g g
4 Joounter hqn.l.ll.uﬂiu tE 'ELF;hnr '

. (0 |:|:‘
Cursar 1 (100 pa

|r1r\

1

2432 ps to 2330952 ps |

Notice the glitch on RCO!
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i Output Transitions T

m Any time multiple bits

Change_’ the counter OUtpUt Care is required of the Ripple Carry Output:
needs time to settle. It can have glitches:

Any of these transition paths are possible!

m Even though all flip-flops
share the same clock,
individual bits will change
at different times.

O Clock skew, propagation
time variations

m Can cause glitches in
combinational logic driven
by the counter

m The RCO can also have a
glitch.

Figure by MIT OpenCourseWare.
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liT Cascading the 74163: Will this Work? Iir

Voo bits 0-3 bits 4-7 bits 8-11
I I I
T QaQsQcQp T QaQeQcQp T QaQeQcQp
P ‘163  Rcol—|P ‘163 RcoO P ‘163  Rrco
D CL LD D,DgD:.Dp| P CL LD D,DgD.Dp|rpP CL LD D,DgD.D,

T 7Y ?

CLK

m ‘163 is enabled only if P and T are high

m When first counter reaches Q =4’b1111, its RCO goes high
for one cycle

m When RCO goes high, next counter is enabled (P T =1)

So far, so good...then what’s wrong?
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i Incorrect Cascade for 74163 i

Everything is fine up to 8'b11101111:

VDD‘L Y 71111 Y 0111 ] o000

T  QaQsQcQp T QaQgQcQp T QaQsQcQp

P ‘163  Rco[—|P ‘163  RcoO P ‘163  RrcoO
> CL LD D,DgD.Dp|P CcL LD D,DyD-.D,| P CcL LD D, Dg DD,

T 7Y 7Y

Problem at 8'b11110000: one of the RCOs is now stuck high for 16 cycles!

VDD‘L T 0000 Y™ 1111 l o000

T QA QB QC QD T QA QB QC QD 1 T QA QB QC QD

P ‘163  Rcol—|P ‘163 ‘163  RrRco
> CL LD D,DyD.Dp| P CL LD D,DgD.Dp| P CL LD D,DgD.D,

W YT 7Y 7Y
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i Correct Cascade for 74163

T

T

Master enable L

T

P QaQsQcQp

RCO
CL LD D, DgDcDp

T

P QaQsQcQp
RCO

> CL LD D, DgDcDp

m P input takes the master enable

O 0O

m T input takes the ripple carry

O 0O

assign RCO = QI[3] & QI[2] & QI[1l] & Q[0] & T;
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nir Summary IMir

m Use blocking assignments for combinational
always blocks

m Use non-blocking assignments for sequential
always blocks

m Synchronous design methodology usually used In
digital circuits
oSingle global clocks to all sequential elements

OoSequential elements almost always of edge-triggered
flavor (design with latches can be tricky)

m Today we saw simple examples of sequential
circuits (counters)
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