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Review: Noise Margin Review: Noise Margin 
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MOS Technology: The NMOS SwitchMOS Technology: The NMOS Switch
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NMOS Device Characteristics NMOS Device Characteristics 
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PMOS: The Complementary SwitchPMOS: The Complementary Switch
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The CMOS InverterThe CMOS Inverter

IN OUT

VDD
VDD

OUT

RPMOS

RNMOS

IN

IN

Switch Model

S

G

G

D

D

S

Rail-to-rail Swing in CMOS



L2: 6.111 Spring 2006 7Introductory Digital Systems Laboratory

Inverter VTC: Load Line AnalysisInverter VTC: Load Line Analysis
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Possible Function of Two InputsPossible Function of Two Inputs

X

Y
F

X Y 16 possible functions (F0–F15)

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

X Y

X NOR Y
NOT (X OR Y)

X NAND Y
NOT (X AND Y)

10 NOT X
X AND Y

X OR Y

NOT Y
X XOR Y X = Y

There are 16 possible functions of 2 input variables:

In general, there are 2 (2^n) functions of n inputs
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Common Logic GatesCommon Logic Gates
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Exclusive (N)OR GateExclusive (N)OR Gate
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XOR
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XNOR
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Widely used in arithmetic structures such as adders and multipliers

Z = X Y + X Y
X or Y but not both 

("inequality", "difference")

Z = X Y + X Y
X and Y the same 

("equality")
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Generic CMOS RecipeGeneric CMOS Recipe
Vdd

A1
F(A1,…,An)

pullup: make this connection
when we want F(A1,…,An) = 1

pulldown: make this connection
when we want F(A1,…,An) = 0

An

...

...
...

A

B

A   B   PDN  PUN     O
0    0     0ff      0n 1
0    1     0ff      0n 1
1    0     0ff      0n 1
1    1     0n 0ff       0

B

A

CL

PUN

PDN

How do you build a 2-input NOR Gate?

A
B

Note: CMOS gates 
result in inverting 
functions!
(easier to build NAND 
vs. AND)

O



L2: 6.111 Spring 2006 12Introductory Digital Systems Laboratory

Theorems of Boolean Algebra (I)Theorems of Boolean Algebra (I)

Elementary
1.   X + 0 = X 1D.   X • 1 = X
2.   X + 1 = 1 2D.   X • 0 = 0
3.   X + X = X 3D.   X • X = X
4. (X) = X
5.   X + X = 1 5D.   X • X = 0

Commutativity:
6.   X + Y = Y + X 6D.   X • Y = Y • X

Associativity:
7.   (X + Y) + Z = X + (Y + Z) 7D.   (X • Y) • Z = X • (Y • Z)

Distributivity:
8.   X • (Y + Z) = (X • Y) + (X • Z) 8D.   X + (Y • Z) = (X + Y) • (X + Z)

Uniting:
9.   X • Y + X • Y = X 9D.   (X + Y) • (X + Y) = X

Absorption:
10. X + X • Y = X 10D.   X • (X + Y) = X
11. (X + Y) • Y = X • Y 11D.   (X • Y) + Y = X + Y
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Theorems of Boolean Algebra (II)Theorems of Boolean Algebra (II)

Factoring:
12. (X • Y) + (X • Z) = 12D.   (X + Y) • (X + Z) =                               

X • (Y + Z) X + (Y • Z)

Consensus:
13. (X • Y) + (Y • Z) + (X • Z) =  13D.  (X + Y) • (Y + Z) • (X + Z) =

X • Y + X • Z (X + Y) • (X + Z)

De Morgan's:
14. (X + Y + ...) = X • Y • ... 14D. (X • Y • ...) = X + Y + ...

Generalized De Morgan's:
15. f(X1,X2,...,Xn,0,1,+,•) =  f(X1,X2,...,Xn,1,0,•,+)

Duality
Dual of a Boolean expression is derived by replacing • by +, + by •, 0 

by 1, and 1 by 0, and leaving variables unchanged
f (X1,X2,...,Xn,0,1,+,•) ⇔ f(X1,X2,...,Xn,1,0,•,+)
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Simple Example: One Bit AdderSimple Example: One Bit Adder

1-bit binary adder
inputs: A, B, Carry-in
outputs: Sum, Carry-out

A
B

Cin
Cout

S

A B Cin S Cout

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Sum-of-Products Canonical Form

S = A B Cin + A B Cin + A B Cin + A B Cin

Cout = A B Cin + A B Cin + A B Cin + A B Cin

Product term (or minterm)
ANDed product of literals – input combination for which output 
is true
Each variable appears exactly once, in true or inverted form (but 
not both)
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Simplify Boolean ExpressionsSimplify Boolean Expressions

Cout =  A B Cin + A B Cin + A B Cin + A B Cin

=  A B Cin +  A B Cin +  A B Cin + A B Cin + A B Cin +  A B Cin

=  (A + A) B Cin + A (B + B) Cin + A B (Cin +  Cin)

=  B Cin + A Cin + A B

=  (B + A) Cin +  A B

S = A B Cin + A B Cin + A B Cin + A B Cin

=( A B + A B )Cin +  (A B + A B) Cin

=(A ⊕ B) Cin + (A ⊕ B) Cin
= A ⊕ B ⊕ Cin
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SumSum--ofof--Products & ProductProducts & Product--ofof--Sum Sum 

short-hand notation form in terms of 3 variables

A B C minterms
0 0 0 A  B  C m0
0 0 1 A  B  C m1
0 1 0 A  B  C m2
0 1 1 A  B  C m3
1 0 0 A  B  C m4
1 0 1 A  B  C m5
1 1 0 A  B  C m6
1 1 1 A  B  C m7

F in canonical form:
F(A, B, C) = Σm(1,3,5,6,7)

=  m1 + m3 + m5 + m6 + m7

canonical form ≠ minimal form
F(A, B, C) = A B C + A B C + AB C + ABC + ABC  

= (A B  + A B + AB  + AB)C + ABC 
= ((A  + A)(B  + B))C + ABC 
= C + ABC = ABC  + C = AB + C

Product term (or minterm): ANDed product of literals – input combination for which output is true

F = + A B C+ A B C + A B C + ABCA B C

A B C maxterms
0 0 0 A + B + C M0
0 0 1 A + B + C M1
0 1 0 A + B + C M2
0 1 1 A + B + C M3
1 0 0 A + B + C M4
1 0 1 A + B+ C M5
1 1 0 A + B +C M6
1 1 1 A +B + C M7

short-hand notation for maxterms of 3 variables

F in canonical form:
F(A, B, C) = ΠM(0,2,4)

=  M0 • M2 • M4
=  (A + B + C) (A + B  + C) (A  + B + C)

canonical form ≠ minimal form
F(A, B, C) = (A + B + C) (A + B  + C) (A  + B + C)

= (A + B + C) (A + B  + C)
(A + B + C) (A  + B + C)

= (A + C) (B + C)

Sum term (or maxterm) - ORed sum of literals – input combination for which output is false
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Mapping Between FormsMapping Between Forms

1. Minterm to Maxterm conversion:
rewrite minterm shorthand using maxterm shorthand
replace minterm indices with the indices not already used

E.g., F(A,B,C) = Σm(3,4,5,6,7) = ΠM(0,1,2)

2. Maxterm to Minterm conversion:
rewrite maxterm shorthand using minterm shorthand
replace maxterm indices with the indices not already used

E.g., F(A,B,C) = ΠM(0,1,2) = Σm(3,4,5,6,7)

3. Minterm expansion of F to Minterm expansion of F':
in minterm shorthand form, list the indices not already used in F

E.g., F(A,B,C) = Σm(3,4,5,6,7)                      F'(A,B,C) = Σm(0,1,2)
= ΠM(0,1,2)                                            = ΠM(3,4,5,6,7)

4. Minterm expansion of F to Maxterm expansion of F':
rewrite in Maxterm form, using the same indices as F

E.g., F(A,B,C) = Σm(3,4,5,6,7)                     F'(A,B,C) = ΠM(3,4,5,6,7)
= ΠM(0,1,2)                                           = Σm(0,1,2)
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The Uniting TheoremThe Uniting Theorem

A B F

0 0 1

0 1 0

1 0 1

1 1 0

B has the same value in both on-set rows
– B remains

A has a different value in the two rows
– A is eliminated

F = A B +AB  = (A +A)B  = B 

Key tool to simplification: A (B + B) = A
Essence of simplification of two-level logic

Find two element subsets of the ON-set where only one variable 
changes its value – this single varying variable can be 
eliminated and a single product term used to represent both 
elements
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Boolean CubesBoolean Cubes

1-cube
X

0 1

Just another way to represent truth table
Visual technique for identifying when the uniting theorem 
can be applied
n input variables = n-dimensional "cube"
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A B F

0 0 1

0 1 0

1 0 1

1 1 0

ON-set = solid nodes
OFF-set = empty nodes

Circled group of the on-set is called the
adjacency plane. Each adjacency plane  
corresponds to a product term. 

A varies within face, B does not
this face represents the literal B

Mapping Truth Tables onto Boolean CubesMapping Truth Tables onto Boolean Cubes
Uniting theorem

A

B

11

00

01

10

F

A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Cout = BCin+AB+ACin

A(B+B)Cin
The on-set is completely covered by the combination (OR) of the subcubes of 
lower dimensionality - note that “111” is covered three times

A

B C

000

111

101

(A+A)BCin AB(Cin+Cin)

Three variable example: Binary full-adder carry-out logic
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Higher Dimension CubesHigher Dimension Cubes

F(A,B,C) = Σm(4,5,6,7)
on-set forms a square
i.e., a cube of dimension 2 (2-D adjacency plane)
represents an expression in one variable       
i.e., 3 dimensions  – 2 dimensions
A is asserted (true) and unchanged
B and C vary

This subcube represents the literal A
A

B C

000

111

101

100

001
010

011
110

In a 3-cube (three variables):
0-cube, i.e., a single node, yields a term in 3 literals
1-cube, i.e., a line of two nodes, yields a term in 2 literals
2-cube, i.e., a plane of four nodes, yields a term in 1 literal
3-cube, i.e., a cube of eight nodes, yields a constant term "1"

In general,
m-subcube within an n-cube (m < n) yields a term with n – m 
literals
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KarnaughKarnaugh MapsMaps

A B F
0 0 1
0 1 0
1 0 1
1 1 0

Alternative to truth-tables to help visualize adjacencies
Guide to applying the uniting theorem - On-set elements with only one 
variable changing value are adjacent unlike in a linear truth-table

0 2

1 3

0 1
A

B
0

1

1

0 0

1

Numbering scheme based on Gray–code
e.g., 00, 01, 11, 10 (only a single bit changes in code for adjacent map cells)
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K-map
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K-map
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K-map
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KK--Map ExamplesMap Examples

Cout = F(A,B,C) = 

A  B A 

B 

Cin 00 01 11 10 
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1 

1 

0 

1 

AB 
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00 01 11 10 
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F(A,B,C) = Σm(0,4,5,7)

F = 

00 C 
AB 

01 11 10 

1 0 0 1 

1 1 0 0 

A 

B 

0 

1 

00 C 
AB 

01 11 10 

0 1 1 0 

0 0 1 1 

A 

B 

0 

1 

F' simply replace 1's with 0's and vice versa

F'(A,B,C) = Σm(1,2,3,6)

F' = 
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Four Variable Four Variable KarnaughKarnaugh MapMap

F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15)

F = C  +  A  B D  +  B  D 

K-map Corner Adjacency
Illustrated in the 4-Cube

Find the smallest number
of the largest possible

subcubes that cover the
ON-set

AB 
00 01 11 10 

1 0 0 1 

0 1 0 0 

1 1 1 1 

1 1 1 1 

00 

01 

11 

10 
C 

CD 

A 

D 

B 

0011 

D 

0010 

0000 

0111 

0110 

0001 C 

A 

B 0100 
1000 

1100 

1101 

1111 

1110 

1001 

1011 

1010 

0101 
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KK--Map Example: DonMap Example: Don’’t Carest Cares

F(A,B,C,D) = Σm(1,3,5,7,9) + Σd(6,12,13)

F = A D  +  B  C  D   w/o don't cares

F = C  D  +  A  D   w/ don't cares

Don't Cares can be treated as 1's or 0's if it is advantageous to do soDon't Cares can be treated as 1's or 0's if it is advantageous to do so

By treating this DC as a "1", a 2-cube
can be formed rather than one 0-cube

AB 
00 01 11 10 

0 0 X 0 

1 1 X 1 

1 1 0 0 

0 X 0 0 

00 

01 

11 

10 
C 

CD 

A 

D 

B AB 
00 01 11 10 

0 0 X 0 

1 1 X 1 

1 1 0 0 

0 X 0 0 

00 

01 

11 

10 
C 

CD 

A 

D 

B 

In PoS form: F = D (A  + C)

Equivalent answer as above, 
but fewer literals
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HazardsHazards

Figure by MIT OpenCourseWare.

A

C

B

A = B = 1

C
1
2
F

Gate delay
Glitch

F

Static hazards: Consider this function:

Implemented with MSI gates:

'00
'00

'00
'00

A

C

B

F

2

1

C
AB

00 01 11 10

0 0 0

0 0

1 1

111

F = A * C + B * C
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Fixing HazardsFixing Hazards

In general, it is difficult to avoid hazards – need a robust
design methodology to deal with hazards.  

The glitch is the result of timing differences 
in parallel data paths. It is associated with the
function jumping between groupings or product
terms on the K-map. To fix it, cover it up with
another grouping or product term!

Figure by MIT OpenCourseWare.

C
AB

00 01 11 10

0 0 0

0 0

1 1

111

A

C
B

F

F = A * C + B * C + A * B
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