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Problem #1: Power Dissipation/HeatProblem #1: Power Dissipation/Heat
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Courtesy Intel (S. Borkar)

How do you cool these chips??How do you cool these chips??

chip

heat sink
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Problem #2: Energy ConsumptionProblem #2: Energy Consumption

(Image by MIT OCW. Adapted from Jon 
Eager, Gates Inc. , S. Watanabe, Sony Inc.)

No Moore’s law for batteries…
Today:  Understand where power goes

and ways to manage it

What can One Joule
of energy do?

Send a 1 
Megabyte 
file over 
802.11b

Operate a 
processor 

for ~ 7s

The Energy Problem

7.5 cm3

AA battery

Alkaline: 
~10,000J

Mow your 
lawn for 

1 ms

Image by MIT OCW.
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Dynamic Energy DissipationDynamic Energy Dissipation
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The Transition Activity Factor The Transition Activity Factor αα00−−>>11

Current Next Output 
Input Input Transition

00 00 1 −> 1
00 01 1 −> 1
00 10 1 −> 1
00 11 1 −> 0
01 00 1 −> 1
01 01 1 −> 1
01 10 1 −> 1
01 11 1 −> 0
10 00 1 −> 1
10 01 1 −> 1
10 10 1 −> 1
10 11 1 −> 0
11 00 0 −> 1
11 01 0 −> 1
11 10 0 −> 1
11 11 0 −> 0

α0−>1 = 3/16

Assume inputs (A,B) arrive 
at f and are uniformly 
distributed
What is the average 
power dissipation?

P = α0−>1 CL VDD
2  f

Z
A
B
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Junction (Silicon) TemperatureJunction (Silicon) Temperature

Simple Scenario

Tj-Ta= RθJA PD

Silicon

RθJA is the thermal resistance 
between silicon and Ambient

RθJAPD

Tj= Ta + RθJA PD

Make this as low as possible

Realistic Scenario

RθJCPD

RθCA = RθCS + RθSA 

Sink
Case

Silicon

TJ

TA

TJ

TC

TS

TATJ

TC

TS

TA

RθCS

RθSA

is minimized by facilitating heat transfer 
(bolt case to extended metal surface – heat sink)
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Intel Pentium 4 Thermal GuidelinesIntel Pentium 4 Thermal Guidelines

Pentium 4 @ 3.06 GHz dissipates 81.8W!
Maximum TC = 69 °C
RCA < 0.23 °C/W for 50 C ambient
Typical chips dissipate 0.5-1W (cheap 
packages without forced air cooling)

Image by MIT OpenCourseWare. Image by MIT OpenCourseWare. Adapted
 from Intel Pentium 4 documentation.
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Power Reduction StrategiesPower Reduction Strategies

Reduce Transition Activity or Switching 
Events
Reduce Capacitance (e.g., keep wires 

short)
Reduce Power Supply Voltage
Frequency is typically fixed by the 
application, though this can be adjusted to 
control power

P = α0−>1 CL VDD
2  f

Optimize at all levels of design hierarchyOptimize at all levels of design hierarchy
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Clock Gating is a Good Idea!Clock Gating is a Good Idea!

+

X

Global Clock Adder Clock

Multiplier Clock

Adder Off

Enable_Adder

Enable_Multiplier

Multiplier On

100’s of different clocks in a microprocessor

Clock Gating Reduces Energy, does it reduce Power?Clock Gating Reduces Energy, does it reduce Power?

Clock gating reduces activity
and is the most common low-power

technique used today
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Does your GHz Processor run at a GHz? Does your GHz Processor run at a GHz? 

Processor

Thermal
Sensor

Note that there is a difference between average and peak 
power

On-chip thermal sensor (diode based), measures the silicon 
temperature

If the silicon junction gets too hot (say 125 °C), then the 
activity is reduced (e.g., reduce clock rate or use clock gating)

Chip
Activity 
Control

Use of Thermal FeedbackUse of Thermal Feedback
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Power Supply ResonancePower Supply Resonance

Lboard Lpackage Rgrid

Switching
currents

Board decap

On-die
decap

Can write a Virus to Activate Can write a Virus to Activate 

Power Supply Resonance!Power Supply Resonance!

Image removed due to copyright restrictions.

Image removed due to copyright restrictions.

Image removed due to copyright restrictions.
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Number Representation:Number Representation:
TwoTwo’’s Complement vs. Sign Magnitudes Complement vs. Sign Magnitude

Sign-MagnitudeTwo’s complement

Consider a 16 bit bus where inputs toggles
between +1 and –1 (i.e., a small noise input)
Which representation is more energy efficient?
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Time Sharing is a Bad IdeaTime Sharing is a Bad Idea

Time Sharing Increases Switching ActivityTime Sharing Increases Switching Activity

2
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Not just a 6Not just a 6--1 Issue: 1 Issue: ““CoolCool”” Software ???Software ???

CPU

0111111100000000

0111111100000001

0111111100000010

0111111100000011

1000000000000000

1000000000000001

1000000000000010

1000000000000011

a[0]
a[1]
a[2]
a[3]

b[0]
b[1]
b[2]
b[3]

float a [256], b[256];
float pi= 3.14;

for (i = 0; i < 255; i++) {a[i] = sin(pi * i /256);}
for (i = 0; i < 255; i++) {b[i] = cos(pi * i /256);}

float a [256], b[256];
float pi= 3.14;

for (i = 0; i < 255; i++) {
a[i] = sin(pi * i /256);
b[i] = cos(pi * i /256);

}

address

MEMORY address

16

512(8)+2+4+8+16+32+64+128+256
= 4607 bit transitions

2(8)+2(2+4+8+16+32+64+128+256)
= 1030 transitions
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GlitchingGlitching TransitionsTransitions

Balancing paths reduces glitching transitions
Structures such as multipliers have lot of glitching transitions
Keeping logic depths short (e.g., pipelining) reduces glitching

++

+

A B C D

(A+B) + (C+D)+

+

+

A B

C

D

(((A+B) + C)+D)

Chain Topology Tree Topology
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Reduce Supply Voltage : But is it Free?Reduce Supply Voltage : But is it Free?
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Transistors Are FreeTransistors Are Free……
(What do you do with a Billion Transistors?)(What do you do with a Billion Transistors?)

OUT

IN

X

Pserial = Cmult 22 f P

f =1GHz
VDD=2V 

parallel = (2Cmult 12 f /2) = Pserial/4

X X

INf = 500Mhz
VDD=1V 

f = 500Mhz
VDD=1V 

IN

SELECT

Trade Area for Low PowerTrade Area for Low Power

OUT
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Algorithmic WorkloadAlgorithmic Workload

Exploit Time Varying Algorithmic WorkloadExploit Time Varying Algorithmic Workload
To Vary the Power Supply Voltage To Vary the Power Supply Voltage 

Image by MIT OCW.



L16: 6.111 Spring 2006 18Introductory Digital Systems Laboratory

Dynamic Voltage Scaling (DVS)Dynamic Voltage Scaling (DVS)
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DVS on a ProcessorDVS on a Processor

Digitally adjustable DC-DC 
converter powers SA-1110 core

μOS selects appropriate clock frequency 
based on workload and latency constraints

SA-1110

Control

μOS

VoutController

3.6V

5

Figure by MIT OpenCourseWare. Adapted
from R. Min, T. Furrer, and A. P. Chandrakasan.
"Dynamic Voltage Scaling Techniques for
Distributed Microsensor Networks." Workshop
on VLSI (April 2000): 43-46.
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Energy Efficiency of SoftwareEnergy Efficiency of Software

CLB CLB
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FPGA (Xilinx) 

““SoftwareSoftware”” Energy Dissipation has Large OverheadEnergy Dissipation has Large Overhead

Processor (StrongARM-1100) 
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Figure by MIT OpenCourseWare. Adapted from A. Sinha, DAC.
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Trends: Leakage and Power GatingTrends: Leakage and Power Gating
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Trends: Energy ScavengingTrends: Energy Scavenging

Image removed due to 
copyright restrictions.

Vibration-to-Electric 
Conversion

~ 10μW

MEMS Generator Power Harvesting Shoes

Courtesy of Joe Paradiso (MIT Media Lab). 
Used with permission.

After 3-6 steps, it provides 3 mA
for 0.5 sec

~10mW
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