
6.111 Lecture # 8

Topics for Today: (as time permits)

1. Memories
2. Assembling 'packages' for designs
3. Discussion of design procedure
4. Development of a design example using a finite state machine

Preview:
No class Monday (Student Holiday)
Wednesday: quiz rev iew and discussion of Phase II
Friday: Quiz 1

Memories are usually organized as 2- dimensional arrays of cells

Address is split into two parts e.g. 4k = 4096 addresses = 214

might have 7 bits of address for each of row and column

Conceptual Memory Cell: This is what goes at each intersection of the row
and column lines (i.e. there are a lot of these!)

Note how this is like a 'D-Latch' The lines D and D* are from the row
decoder and control.

D = D* = '1' => 'Read': cell contents go onto sense lines
D = D* = '0' => This row is not addressed. Output is high (collectors

open and some other row drives sense
lines)

D = /D* and G = '1': 'Write': D is latched onto cell when G goes low

Output of this cell is 'open
collector' and so "pulls
down" the sense lines that
go to the column decoding
MUX

Control Lines:

Often Active Low
OE is 'Output Enable'
WE is 'Write Enable'
CS is 'Chip Select'

If: /WE is LOW,
 /CS is LOW,
 /OE is HIGH,
 Data pins are input
 Input data is written to chip

If /WE is HIGH
 /CS is LOW
 /OE is LOW
 Data pins are output
 Date is read from memory

Some have simpler control structure

The /OE line is in many cases redundant (but having the extra line to use can be
convenient)

In these parts,
Read => /CS = LOW and /WE = HIGH
Write => /CS = LOW and /WE = LOW

Read Cycle Timing

Address takes a little while to propagate into the right places
It takes a bit less time for the part to 'grab' the output pins

(invalid data may be on them initially)
And note it takes a little while after /CS goes high for the part to let go

of the output pins
And if Address goes invalid before /CS goes high, there may be invalid

data on the output pins

Write cycle timing is a little more complex

==> It is most important that Address and Data must BOTH be valid
 during the write pulse <==

==> It is also important that Address must be fixed and valid during
 the Whole of the write pulse <==

==> Data must be valid
for a period at the
end of the write
pulse <==

Tristated or unstable
address lines can wind up
writing garbage to a large
number of memory
locations!

Here is a general purpose suggestion for handling memory in a FSM controlled
system.

You can do it more simply in Lab 2

Driving /CS with /CLK ensures 'clean' write pulses and reduces the possibility of
bus contention. Both WRITE and READ operations are enabled only on the
second half of the clock cycle (before the positive going edge)

This timing diagram illustrates how the scheme on the previous slide might work.

It assumes Addr changes after the positive going clock edge and so is
stable when the clock is low.

Also, if the control lines are driven by a FSM, they will change after the
positive going clock edge too.

Packages contain bits (or larger pieces of code) that you may re-use.
They are introduced by statements such as:

use work.gridpkg.all;

To set up a package you first write and test the pieces
(perhaps using smaller PLD's than you plan for the actual project to save computation
time) and then:
-Assemble all of the generic and port declarations from the entities
 into a file called (for example) gridpkg.vhd

-Then put all of the files into a single file: do something like:

 cat gridpkg.vhd synchronizer.vhd reg.vhd ctr.vhd fsmt.vhd > all.vhd

-Set the device to the target device, C374I.

-Compile this file (without it being the Top design).

Now you will have something you can use as a library package if you use the parts as specified in the
entity declarations.

Hierarchical Design

Start with a one-block block diagram.

Expand to major blocks.

Repeat expansion until blocks are simple.

Implement these simple blocks and test.
(Code them in VHDL and simulate.)

Wire the blocks together.
(Use structural instantiation in VHDL.)

Test the design.

Stay Tuned: we will illustrate these steps.

Example: Digitizer Interface, FSM Control

Position detection using an array of wires
Generate magnetic field with a coil (not shown here)
Count while sweeping over the array (contents of Counter)

Detect position of a cursor:
By phase reversal Or other artifact of signal detectionv(INT signal)
Put count into a register (/LD is low)

Implement a 'Handshake'
Set handshake line (dav) when signal is ready
Wait for ready signal (rdy) before counting (SRDY is synchronized RDY)

Here is the conventionally drawn FSM diagram of the system we are going to
implement:

States:
Ready: waiting for the synchronized RDY
signal from the user (_ of handshake)

Count: counter is incrementing itself along
with the position sensor of the grid

ERR: Counter has overflowed, which means
sensor was not found

Load: Counter was interrupted by finding
the sensor: contents (count) is the position
Count is loaded onto output counter

Reset: transient state - counter is cleared
and transition is made to Ready

I/O Signals for FSM

Input:

SRDY Synchronized GO (receiver ready)
INT Grid position is detected (assumed synchronized)
ERR Grid overflow (position not detected)

Output:
DAV Data is ready
LD Load count into the output register
CLR Clear the counter
COUNT Enable the counter to count

One smaller of the blocks is the syhchronizer:

library ieee;
use ieee.std_logic_1164.all;

entity synchronizer is
 port (rdy, clk : in std_logic;
 srdy : out std_logic);
end synchronizer;

architecture behavioral of synchronizer is
begin -- behavioral
 sync:process(clk)
 begin
 if rising_edge(clk) then
 srdy <= rdy;
 end if;
 end process sync;
end architecture behavioral;

Second Part: This is a loadable register whose width is a generic.
size has a default - one number to change
instantiation as a component can define size

library ieee;
use ieee.std_logic_1164.all;
entity reg is
 generic (size: integer := 4);
 port (n_ld, clk : in std_logic;
 grid : in std_logic_vector(size - 1 downto 0);
 data : out std_logic_vector(size - 1 downto 0));
end reg;
architecture behavioral of reg is
begin -- behavioral
 regff:process(clk)
 begin
 if rising_edge(clk) then
 if n_ld = '0' then
 data <= grid;
 end if;
 end if;
 end process;
end architecture behavioral;

Now we are going to test the resister, using a counter which we have already designed
and will discuss next.

library ieee;
use ieee.std_logic_1164.all;
use work.gridpkg.all;
entity testreg is
 generic (gridsize : integer := 4); -- adjustable
 port (count, n_clr, n_ld, clk : in std_logic; -- simple inputs
 reg_count : out std_logic_vector(gridsize-1 downto 0));
 -- to see if it works
end testreg;

-- purpose: assemble counter and register
architecture test of testreg is
 signal gridcnt : std_logic_vector(gridsize-1 downto 0); -- internal
count
 signal err : std_logic; -- counter overflow

begin -- test
 count_circuit: ctr
 port map (count => count, n_clr => n_clr, clk => clk,
 err=> err, grid => gridcnt);
 reg_circuit: reg
 port map (n_ld => n_ld, clk => clk, grid => gridcnt,
 data => reg_count);
end test;

 Comments on Register Testing (Simulation)

Creation of buses often helps.
Note we have specified a bus (a group of lines)

Beware ==> one cannot use buses to specify inputs. <==
Buses merely provide a way of displaying signal values.

Load behavior of the register is as expected

You can see the counter doing its thing

Register loads on a clock edge when the /LD line is low

Next is the counter (which we have already used), but this should already be familiar:

As promised earlier, here is a clearable counter with a carry out
Note this one has generic (adjustable) size

library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;

entity ctr is
 generic (size: integer := 4);
 port (count, n_clr, clk : in std_logic;
 err : out std_logic;
 grid : out std_logic_vector(size - 1 downto 0));
end ctr;
architecture behavioral of ctr is
 signal cnt_int : std_logic_vector(size - 1 downto 0);
 signal all_ones : std_logic_vector(size - 1 downto 0);
begin -- behavioral
 all_ones <= (others => '1');
 grid <= cnt_int;
 err <= '1' when cnt_int = all_ones else '0';
 state_transition:process(clk)
 begin
 if rising_edge(clk) then
 if n_clr = '0' then
 cnt_int <= (others => '0');
 elsif count = '1' then
 cnt_int <= cnt_int + 1;
 end if;
 end if;
 end process state_transition;
end behavioral;

Here is the simulation of the counter:
It counts (see the progression of grid_0 to grid_3)
RCO (err) is asserted at the right time (1111)
The thing clears synchronously when n_clr is brought low)

Now the control part of the system is the FSM: fsmt.vhd

There are multiple ways of defining states:

Does one use constants or enumerated types?

In some cases, one doesn't need the "efficiency" of making the state assignment. The
system will do it if we don't. But here we do it.

Here is the entity statement and the beginning of the architecture:

library ieee;
use ieee.std_logic_1164.all;

entity fsm is
 port (srdy, int, errin, clk : in std_logic;
 dav, countout, n_clr, n_ld : out std_logic);
end fsm;

architecture behavioral of fsm is
 type StateType is (READY, Count, Load, ERR, Reset);
 attribute enum_encoding of StateType: type is
 "000 001 011 010 100";
 signal state : StateType;

begin -- behavioral
 n_clr <= '0' when (state = Reset) or (state = ERR) else '1';
 n_ld <= '0' when state = Load else '1';
 countout <= '1' when state = Count else '0';
 dav <= '1' when (state = READY) and (srdy = '0') else '0';
 state_transitions:process(clk)
 begin
 if rising_edge(clk) then
 case state is
 when READY =>
 if srdy = '0' then state <= READY;
 else state <= Count;
 end if;
 when Count =>
 if errin = '1' then state <= ERR;
 elsif int = '0' then state <= Count;
 else state <= Load;
 end if;
 when Load =>
 state <= Reset;
 when Reset =>
 state <= READY;
 when ERR =>
 state <= Count;
 -- don't need "when others" as all cases guaranteed
 end case;
 end if;
 end process state_transitions;
end architecture behavioral;

FSM Testing (Simulation)
Exercise all state transitions
An advantage of using constants rather than enumerated types is that the state

names are visible. One has to poke around to see which jedec nodes encode the state!

State | 0 | 1 | 3 | 4 | 0 | 1

(0 => READY, 1 => Count, 3=> Load, 4 => RESET)

use ieee.std_logic_1164.all;
package gridpkg is
 component synchronizer
 port (rdy, clk : in std_logic;
 srdy : out std_logic);
 end component;
 component fsm
 port (srdy, int, errin, clk : in std_logic;
 dav, countout, n_clr, n_ld : out std_logic);
 end component;
 component ctr
 generic (size: integer := 4);
 port (count, n_clr, clk : in std_logic;
 err : out std_logic;
 grid : out std_logic_vector(size - 1 downto 0));
 end component;
 component reg
 generic (size: integer := 4);
 port (n_ld, clk : in std_logic;
 grid : in std_logic_vector(size - 1 downto 0);
 data : out std_logic_vector(size - 1 downto 0));
 end component;
end gridpkg;

And then assemble the whole package file to be compiled by:
cat gridpkg.vhd synchronizer.vhd reg.vhd ctr.vhd fsmt.vhd > all.vhd

Now we build all the component parts into a package: this is the header of that package

To generate gridtop.vhd, the 'top level' of the system:

'Wire' the components together using structural instantiation. (This is
isomorphic with physically wiring the pieces together).

 The entity only has signals specified in the one-block block diagram.
 I used a generic, gridsize, for ease of overall testing.

library ieee;
use ieee.std_logic_1164.all;
use work.gridpkg.all; --built according to instructions earlier
entity grid is
 generic (gridsize: integer := 4);
 port (rdy, int, clk : in std_logic;
 dav : out std_logic;
 data : out std_logic_vector(gridsize - 1 downto 0);
 grid : out std_logic_vector(gridsize - 1 downto 0));
end grid;

architecture top of grid is
 signal srdy, err : std_logic;
 signal count, n_clr, n_ld : std_logic;
 signal gridint : std_logic_vector(gridsize - 1 downto 0);
begin
 sync_ckt: synchronizer
 port map (clk => clk, rdy => rdy, srdy => srdy);
 fsm_ckt: fsm
 port map (srdy => srdy, int=> int, errin => err,
 clk => clk, dav => dav, countout => count,
 n_clr => n_clr, n_ld => n_ld);
 ctr_ckt: ctr
 generic map(size => gridsize)
 port map (count => count, n_clr => n_clr, clk => clk,
 err => err, grid => gridint);
 grid <= gridint;
 reg_ckt: reg
 generic map(size => gridsize)
 port map (n_ld => n_ld, clk => clk, grid => gridint,
 data => data);
end top;

The architecture part of the assembled system is quite simple, reflecting the structure
of the top-level block diagram

Finally, we should be able to test the top level functionality (we do need to insert an 'int' signal)

