6.111 Lecture#4
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Countingisavery important function in the digital world, and it isdone
in avariety of ways

Hereisa'ripple' counter using negative edgetriggered T flip flops

Count Sequence:
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Hereiswhy it iscalled a'ripple counter:

Count Sequence
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This transition expanded
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The effect of each input transition must affect all bits, and it doesthis
by rippling through from LSB to M SB

An odd effect isthat the transient count is alwayslessthan thetrue
count.

Can COUNT fast, but maybe can't be READ fast!



'Synchronous counter suse more logic to reduce thetimeto stable outputs.

Hereisa samplified version of the 4 bit 74L S163 counter

i=sill

Synchronous Counters: reduce ripple by setting all bits at once

I=P*T

Da=/1"Qa=+1"/Qa

Db=/1*Qb +1* Qa*/Qb +/Qa* Qb
Dc=/1"Qc+1*Qa* Qb */Qc+/Qa* Qc+/Qb * Qc

Dd=/1"Qd +1™*Qa* Qb * Qc * /Qd + Qd*/Qa + Qd*/Qb + Qd*/Qc
Rco = T*"Qa*Qb*Qc*Qd



Notethat, while all bits of the synchrous counter are set very closeto the
sametime, they may not be set at exactly the sametime.

Thismeansthat thereisarapidly changing transient state of the counter.
If it passesthrough all on€e'sit will cause a'glitch' on theripple carry out.

You areasked tolook for thisin Lab 1, but you may not seeit!

Care is required of the
Ripple Carry Output:
It can have glitches:
Any of these transition
paths are possible!




To cascade synchronous counters (to count more bits):

Pis

Count

"count Enable”
RCO and T are daisy chained
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The'163 will ‘count' ONLY if Pand T areboth high

Notethat RCO isthe AND of all four bitsand T.

Soif thisisinput tothe T input of the next higher nibble, it
indicates that all bitsbelow are set, so the next higher nibble

should count.

Pis'count enable', and P and T should betied together ONLY

for the least significant 4 bits of a counter.
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This one counts 0,1,2, ... ,11,0,1 ... This one counts 4,5, ..., 15,4,5...

With alittle ingenuity, you can achieve all kinds of count sequences. These
are both divide by twelve cir cuits.



Finite State machines

Finite State Machines are Clocked Sequential Systems

Inputs ——=  Combinational —> Outputs
Logic
Old Next
State " nY State
Dije System assumes the
_ State Memory new state after the
CLK A—F clock edge

We have already seen simple FSM'sin Flip Flops and Counters
But you can do much more complex things with them

After aclock edge, the 'machine' assumes a state that depends on
where it was before the edge and its inputs just before the edge



X — Y
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"Mealy Model": Output = F(State, Input)

£

If the input iswired to the
output logic, the output can
change asynchronoudy in
response to changesin the
input.

O
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Arcs hetween states also
note output
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Y Arcs note transitions only
"Moore Model": Output = F{State) State names describe output

On the other hand, if the @ = @

input isused ONLY in the
next-state logic, the output
is fixed during each clock $0 | s1 S
cycle and only changes !
after the clock edge.




Clock speed is limited by FF delay, Combinatoric delay and setup time.
New state is determined by inputs and old state just BEFORE clock edge

- “'— Clock—-to-() delay

0 X Stable State X
Combinatoric delay —-‘ ‘-—
Inputs X
Setn —- -—
pls ‘ —-‘ ‘-— Hold Ty,

D X stable X

Outputs May have glitches!! X Stable Outputs




We have automated procedures to build the logic foe finite state machines, but
here is an example of avery simple machine.

Thisis one way of describing an
FSM, in terms of transitions on
each clock edge.

comb

logic [—®= Dy
—-}D-l Ql

clk

4 possible states require 2 bits of
state. Thisisamealey machine



Next State and Output Determination: Logic Specification
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D1 = x*Q0+/Q1*Q0-+/x*Q1+/ Q0

DO = x*/Q1+/x*Q0*Q1
y = x*Q1+Q1+Q0
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It is straightforward to build atruth table for 'next state' based on 'present
state' and input. The output is also derived from the same variables.



Hereisthe logic that would be required to implement that FSM, if it were made out of
discrete gates.
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Programmable Logic: Here are two old PALs
Notel, O and I/O pins
Power and Ground are consistently upper right and lower |eft
Clock ispin 1 and /OE is lower right, if those are required
These are historic parts:. fast, cheap and you probably won't ever see one
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Hereis aschematic
diagram for the 16L.8: we
can learn more about this
by considering its parts.

It more complex partsit is
not usual to see the whole
wiring diagram as you do

here.
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Programmable Array Logic (PAL)
The basic element is the ‘product term': essentially awired AND of input signals
and their complements

Y ou can make things like a*b*/c

signal and
complement
e
Input

_& Product
signals . } _:irﬂf?'

2

Z Programmable
=T~ Connections

The AND is represented byv:

<
This is a 'wired AND' — & B

13




All of these devices synthesize alarge OR of ANDs

The product terms produced by the ANDs are combined in large ORs

And the output from the OR can
be treated in 8 number of ways
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Some older PALs: Output is sent directly to a pin. (16L8)

e Output tri-state is
enabled by one product
term

—1

"Feeback" or input from
the pin

%ji

Or theoutput can beregistered, asin the 16R4

Note that in this case the 'feedback’ is
From Pin 1 from the register, not the pin.
Pin 1 isnow dedicated to being the

- EI clock in.put and isnot available asa
regular input.
> O Pin 13 (or the lower right hand pin) is
-1 \ output enable and is not availlable as a
regular input

*

From Pin 13-



Programmable L ogic Devices have become more complex
Hereisthe block diagram level diagram of the 22v10
The Programmable Array is familiar
Note the ORs employ different numbers of product terms
And here the output architecture is also programmable

Logic Block Diagram (PDIP/CDIP)
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Thisisthe output logic macrocell for the 22V 10
Output enable is derived froma single product term
Output Select has 4 choices:
Direct or inverted
Registered direct or inverted
'Feedback’ input is either from the register or from the pin

Theclock isstill fromPin 1

o [: The select bits are programmed
I CUTPUT —
SELECT
D [n] Q ML
cr—T] (] 5 5

IKPUTS
FEEDBACK
BALEX

Co

MACROCELL CEZ2 104




CPLD's arejust more complicated PLD's
Hereis adiagram for the Cypress '374i part

Logic Block Diagram CLOCK
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Hereis aprogram logic block
Note there are both 1/0 and 'buried' macrocells
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Figure 3. Logic Block for CYTCIT2i and CYTC374i (Register Intensive)



Input/Output Macrocell (programmable architecture)
Not alot different from the PAL
Note there are four available clock lines: chosen by aMUX
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Lab Kits have four '374i parts
Note that interconnections limit flexibility of signal allocation

C10-0-10-7, 10-11-10-14,

A0-pin Caonnector

[0-49 - 10-53, 10-56-10-63)
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0sc g
CLK () | |
Interconnect Bus
{10-8,10-14 [0-54)
MuBus Inferface
(I0-16-[0-23, 10-24 - [0-28, 10-27 - 10-31, [0-32-[0-37, [0-39-10-48)
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