6.111 Lecture # 3

Voo
|
X | % a4k % 1.6 k 130
. Z
X2 _}
Inputs
L . X1 Z
Simplified Schematic X2 Output
of 74L.S00 (there are
4 of these in an "00)
1k

Note multiple emitter
inputs -

NAND gate is the basic building block
Totem pole output

|
[I— _
— } Current Convention

oL

74L.S00 Current (mA)
Output capability LOW 1 8 mA
Output Capability HIGH 1, -400 pA
Input Required LOW I, -0.4 mA
Input Required HIGH IIH 20 HA

These are typical numbers but read data sheet if in doubt:
There are many exceptions

TTL Voltage Ranges

These are important! Valid input and output values
are in the ranges shown.

— v — T (5.0 ——
| N - l dte that the
Guaranteed RUE SWItC_hlng
it output HIGH reshold will be
TP fferent for
fferent parts or
You BN === struments -- in
—— YW en T >ope
"Noise Margin®
Vih — T (1.3)
F— Vi —7T (0.8

Parmissible
input LOW YoL —— (@4

Guaranteed output LOW

Totem Pole Output
{Common for TTL)

out

+5

j l/l
supply

j 1

I

j? vnut

vnut

— 1
out

|
supply

\

1-2 nS

TTL Totem Pole Outputs
can draw LARGE current
spikes on switching

+5
Some outputs are

open collector: need Rext

a pull-up resistor.

Speed is affected by +
R axt and by external Y out

and junction capacitance

+5
Open collector gates can be

wired together like this to make

'wired AND’s.
This is a ’bug’ that can be driven E
by more than one input source

You can’t do this with Totem Pole outputs!

Feedback produces 'State’

Note that either 'state’

X r~o¥qge o 3 (X=0,Y=lor
1 o X=1, Y=0)
is valid

. 2 .
" Trythisin the lab...

YWhat does this one du'?

‘State’ implies memory -- here is how we save information

S-R Latch (74LS279)

_ SR|IQ Q
S 001 1
Q 011 0
100 1
111 ﬂ]} Both work!
_ — 0 {Holds state)
R Q

Question: What
happensif Sand R
golto]l atthe
same time?

You can build one of these from NAND gates, but there is a packaged, MSI

version.
Question: what happens if you build one from NOR gates?

D Latch {74L8373 is an octal latch with tristate)

‘Latch’ is an important notion: its input is controlled by a 'gate’
When the 'gate’ goes from high to low, the state of the device holds

Question: what happens if the input and gate change state at nearly
the same time?

Problem with latches in multi-stage logic

Y
X —b Q D QI Z
C GoE Q| MGOE QF—
¢ T
~
D _ | Will this do
C [L] what we want?
Y |

Latch type logic has an issue with propagation of signals
How many stages of logic will be affected by a signal
change during one clock (G high) cycle?

Multi-phase clocks have been used for this (Half the G's high
one instance, the other half the next), but there is a better
solution...

Edge Triggered Flip Flops : :
are a bit like this: E Edge trlggerEd Ioglc

& differs from latches in
o T e U D QF that it is the transition
o [cLk—&__Q of the 'clock’ input that
E—L causes the flip flop to
74LS74 has two of these hold state

Preset and Clear are active low
and asynchronous

Actual implementation
Is not quite like what is

\
=

shown here.
It takes a little effort to
reason through what

cL Q this part does. See that

- the 'preset' and ‘clear’
" 5} are asynchronous,
which means they take
7474 Simplified -
] Schernats effect right away,

without waiting for the
clock edge.

Typical Timing Parameters

t Z F t h for 74LS Parts

D__ Setup t _> 20nS
CLK I Hold t > 5oS
CL L Clockto Q@ < 20nS
Q [CL or PRto Q < 25 oS

! }Z‘ |<7 CLK high > 25nS
t ol t phl Max Frequency 25 MHz

Setup Time: Input must be stable before the clock edge

Hold Time: Input must stay stable after the clock edge

Clock to Q: maximum time for output to be stable after clock edge

CL or PR to Q: maximum time for output to be stable after
asynchronous input

Max Frequency = 1/(Clock HIGH + Clock LOW)

Flip flops are simple finite state machines. Here is how we describe such
machines

Transitions (arcs)

Flip-Flops are Two-State Devices:

— D Q— DQy,

0|0

N 11
D-Flip Flop

T Flip-Flop (toggle)

T
—T Q—

Qn
0 Qn—l

oy
11 s 11
—IS Q S R Qg 0x 10 X0
]t (O D)
_ 1R Jg 1 0 W
SRFLpFlop 1 0 1
11

P =—— Undefined State!

The SR FF is an edge triggered version of the SR latch. It has an
undefined state problem that is solved in the JK FF

J-K Flip-Flop
J K Qn 0X 1X
—1J Q- TN 4
- 00 Q. o 0’
—K 01 0 —
X1
10 1
11 Q.

Note this JK has a negative edge triggered clock!

These are the four possible data elements

o —— »

D,

D2 —

D This is a4:1
3 DO MUX

gk
St S

Y\\These are the two bits of address

Multiplexer's (MUX'es) are an important building block
This one selects one of four inputs based on an ‘address'

D7 S

74L.5151isa o S
81 MUX —ps v |- Q
Strobeis —D4 45 8 v
active low — D3 W D -
Y = S * D(CBA) P2 w
w=Y — D0 3
Addr

CBA
[T1
The 74L.S151 part has 8 inputs and so 3 bits of address

It also has a 'strobe" input which is functionally a chip select

The output is presented both direct and inverted

Demultiplexer
or Selector is
the inverse of
the Multiplexer
It selects the
addressed line

74L.5138
3:8 Decoder

Address

Al

vV

AD—

One of these
lines is selected
(pulled low in
this case)

The 138 has a complex
enable mechanism

G1+
G2 —O_Cgﬁ— Enable

G3 —

Counting is a very important function in the digital world, and it is done
in a variety of ways

Here is a 'ripple’ counter using negative edge triggered T flip flops

Count Sequence:

Count
I_T Q, |—T Q, |—T Q. I_T Q_Qd 0000
x ¥ — T e > 0001
0010
0011
The LSB is on the left in this diagram. It always 0100
toggles. 0101
0110
The transition of 1 -> 0 of each 'bit’ triggers a 0111
toggle of the next most significant bit 1000
1001
1010
1011

1100

Here is why it is called a 'ripple’ counter:

Count Sequence

x LI LML erer 0111

Qa_IIIIIII_I 0110

Q — 1 L — I 1 0100
_ =P

Q¢ | | 0000
Q [1000

This transition expanded

The effect of each input transition must affect all bits, and it does this
by rippling through from LSB to MSB

An odd effect is that the transient count is always less than the true
count.

Can COUNT fast, but maybe can't be READ fast!

‘Synchronous' counters use more logic to reduce the time to stable outputs.

Here is a simplified version of the 4 bit 74LS163 counter

Synchronous Counters: reduce ripple by setting all bits at once

I=P*T

Da=/1"Qa+1"/Qa

Db=/*"Qb+1*Qa*/Qb +/Qa™* Qb
De=/1"Qc+1*Qa* Qb */Qc+/Qa* Qc+/Qb * Qc
Dd=/1*"Qd+1*Qa™* Qb * Qc */Qd + Qd*/Qa + Qd*/Qb + Qd*/Qc
Rco = T*"Qa*Qb*Qc*Qd

Note that, while all bits of the synchrous counter are set very close to the
same time, they may not be set at exactly the same time.

This means that there is a rapidly changing transient state of the counter.
If it passes through all one's it will cause a "glitch’ on the ripple carry out.

You are asked to look for this in Lab 1, but you may not see it!

Care is required of the
Ripple Carry Qutput:

It can have glitches:
Any of these transition
paths are possiblel

To cascade synchronous counters (to count more bits):
P is "count Enable”
RCO and T are daisy chained

Conant
Enable | |
P QthQch P QthQch
T RCO T RCO[
L CLLD A B C D L CLLD A B C D
—_ |_ [JE &) |_ [JE &)
CLK

The '163 will ‘count' ONLY if P and T are both high

Note that RCO is the AND of all four bitsand T.

So if this is input to the T input of the next higher nibble, it
indicates that all bits below are set, so the next higher nibble

should count.

P is 'count enable’, and P and T should be tied together ONLY
for the least significant 4 bits of a counter.

+3
+3

P
P QQ00, 9,009,

—_— T RCO — T RCO [~

CLK CLLD A BCD CIK CLLD A BCD

_|C_3? ?Ullv

This one counts 0,1,2, ...,11,0,1 ... This one counts 4,5, ..., 15, 4, 5...

With a little ingenuity, you can achieve all kinds of count sequences. These
are both divide by twelve circuits.

