
6.111 Lecture # 19

Controlling Position

Servomechanisms are of this form:

Some General Features of Servos:

They are feedback circuits

Natural frequencies are 'zeros' of 1+G(s)H(s)

System is unstable if these zeros are in the right half plane

'Negative' feedback becomes positive with 180 degree phase shift

Putting an integrator into H(s) drives steady error to zero

But high order systems are more likely to have RHP zeros

Time delay and high gain lead to RHP zeros

1

Digital Servos

Major parts of the system are digital
Digital systems are more flexible to design
More repeatable (not subject to gain drift)

Analog parts are important
But in many cases can be avoided...

But note that digital servos have fixed (or worse stochastic)
time delays

Position Measurement

Voltage proportional to position
Linear or rotary potentiometer
Accuracy limited by that of potentiometer
Accuracy limited by voltage source

3 4

2

Measure Rotary Position

Two sinusoidal potentiometers
V1 = V0 cos θ
V2 = V0 sin θ

This can be done magnetically too
Sinusoidal coupling
Requires complex analog detection
Is called a Resolver

These are still analog
Accuracy limited
Subject to drift
Complex calculations

Another Digital Method

Low Resolution Absolute Sensor

Digital Measurement of Position

Sense light transmission
Typically through a transparent sector
Gives a reading over a range of positions
May need a lot of sensors...

5

Two-Phase Encoder

Two Source-Sensor Sets
Offset by half sector width
This example has 30 degree sectors
And 15 degree resolution

7 8

6

Use of Encoder Waveforms

This circuit generates: A and B are sensor signals
An Up/Down signal (CW or CCW) Rotating one way, Count Edge is when U/D is high
A Count Signal (Edge Encountered) Rotating other way, is when U/D is low

9

Another way of doing an encoder

Displace Sensors by 1/2 band

Add a 'Home' row with an absolute sense

Motors

Simple servomechanisms are made with DC motors
DC Motor Model is simple:

Resistance in series with a voltage source
Motor produces torque
Mechanical system (controlled system) determines
speed as influenced by torque

11 12

10

Permanent Magnet DC Motors

Very commonly used:
'Back Voltage' proportional to speed
Torque proportional to current

Servo Strategy:
Command torque by setting current
Measure speed

Running open loop:
There is a 'zero torque' speed
Torque proportional to difference from that speed

Stepper Motors

Digital Motors

Two "stacks" (phases)

Usually biased by permanent magnets

Move a discrete distance per 'step'

This is an axial view

Cut through both of two sections

13

Stepper Motor Windings

Two distinct 'phases'
May be driven as distinct windings
Or may be driven as 'bifilar' windings
Bifilar is easier but less efficient

Bipolar Winding

Driven by 'H-Bridges' of transistors
Can put current through windings in either direction
But note upper transistor gating is tricky
Uses all of the winding

15 16

14

Bifilar Winding

Driven by four transistors to ground
Note it center of winding is held 'high',

Transistors are between winding and ground
NPN bipolars work well
Transistor gates are easily handled

Motors run in either direction

Current drive strategy
Bipolar winding on left
Bifilar winding on right

17

Dynamics are important

Stepper can hold a certain torque

Stepper can carry more torque at low speed

At high speed, torque must be de-rated

Motors draw CURRENT!

Need to make sure devices can handle it.

Quiz 2

Walker Room 50-340, Friday, November 1, Class Hour (1-2)
Two Crib Sheets Allowed

(The one for quiz 1 and another one)

Venue: Lectures 1-16
Homework Sets 1-5
Labs 1-3

19 20

18

Finite State Machines:

State Description

Transition Tables

Implementation in hardware

Implementation in VHDL

VHDL

Entity Declaration

Architecture Specification

Process to wrap around concurrent statements

Assignments and logical statements

if-then, elsif-then, else, endif

case-when-end case

Component instantiation

How to code FSM's

Implicit and explicit registers

Timing implications

21

DESIGN RULES:

Use modularity:

Small subsystems are simpler to design

Subsystem definition is important

Design for testability:

Design subsystems so they will run alone

Avoid trap states (check use of Don't Cares).

Do your logic design carefully, and first:

Avoid problems from ``glitches'':

Gate delays and multiple bit transitions can (and do) cause

``glitches''.

CLK, G, /PR and /CL inputs must NOT have glitches.

Carry from counter (e.g. 163) can have glitches.

Don't gate the clock.

Use proper timing:

Be sure that combinational output is stable before assertion of clock.

Clock period $\>$ Max (FF delay,Input Changes) + CL delay + Setup.

Obey flip--flop timing restrictions: setup, hold times, clock width.

Don't derive asynchronous clear from flip--flops to be cleared.

All edge--triggered flip--flops must operate on the SAME clock edge.

Beware of clock skew.

Tree structure to expand clock.

Change inputs only (just) after the clock edge.

23

Functionality (and examples) with which to be familiar:

Basic AND, OR, NAND, NOR, XOR,...

Clocked D, J-K flip flops and registers

Counters ('163, '169 and '393)

MUXs and Decoders ('151 and '138)

Shift Registers ('95 and '194)

Digital comparator and ALU ('85 and ’181)

Binary Arithmetic

Representation of numbers

unsigned

sign/magnitude

Two’s complement)

Addition, subtraction, multiplication

PLD’s:

PALs and CPLD’s

Direct implementation of product terms

Output architectures

22

Be careful about asynchronous events:

Synchronize all external inputs.

Asynchronous event should change ONLY one flip--flop.

Avoid tri--state bus contention.

Don't overload outputs (observe fan--out)

Use memory properly:

Avoid High-Z address to SRAM when CE is true.

Avoid address changes when write pulse is true.

Make sure your write pulse is ``clean''.

Wire properly:

Keep wires short.

Wire all inputs (even unused ones).

Use bypass (decoupling) capacitors.

Use multiple grounds between kits

Alternate ground with signals in flat cables. Or use twisted pairs between kits.

Don't overload your power supply!

Use debugging strategy:

Debug modules systematically

Is every pin wired? Why not?.

Use a `scope! Check valid logic levels and power supply.

Use your logic analyzer for checking sequencing

24

