6.111 Lecture # 12

Binary arithmetic: most operations are familiar

Each place in a binary number has value 2"

5 = 00000101 =1+ 4
19 = 00010011 = 1+2+16
5 + 00000101 Addition often
requires a ‘carry’

19 00010011

= 00011000 24 = 16+8
19 - 00010011 Subtraction may
5 = 00000101 require a ‘borrow

00001110 14 = 8+4+2

What happens if we do this operation:

5 00000101
-19 00010011
= 11110010

Note two things about this operation:

1. We had to invent a ‘borrow’ bit from the left

2. What is left is the two’s complement representation of -14:

14 = 00001110
-14 = 11110001
+1

= 11110010

Representation of negative numbers: there are a number of ways we
might do this:

1. Use of a ‘sign bit’ (this is just like having a sign for the
number)

-5 = 10000101

Note that addition and subtraction are somewhat complex
(and multiplication and division). Generally must strip the
sign bit, do the operation, then figure out the sign of the
result.

2. ‘One’s Complement’: invert each bit. We won’t have much to
say about this.

3. ‘Two’s Complement’: invert each bit and add one.

20

Two’s complement is consistent and reversible:
5 = 00000101
-5 = 11111010 +1 = 11111011

5 = 00000100 +1 = 00000101

Addition and Subtraction between two’s complement numbers works:

-5 11111011
+(-19) 11101101
= 11101000 (which is -24)

00010111+1 = 00011000 = 16+8

40

5.5 = 00000101.1 In many cases we want to
5.0 = 00000101.0 extend a number: to employ
more ‘binary places’ to
-5.0 = 11111010.1 represent a number. How do
+ 1 we do this extension?
= 11111101.0

To extend a number (represent with more places) without changing
value:

If the number is: Extend to_left Extend to right
Positive zeros zeros
Negative ones zeros

50

Now consider how we might do a simple multiplication

This involves shifting the top
number repeatedly to the left

9 = 00001001 and adding it to the partial
X 13 = 00001101 sum. This works well and
_ requires a shift register as
B 00001001 wide as the product as well as
+ 00001001 an accumulator for the partial
- 0000101101 and final product

+ 00001001
= 00001110101 (117)

19

Here is a hardware description of a multiplier

pem—rey
—

+

00010011
11111011
00010011
00010011
00111001
00010011
00011010001
00010011
001000000001
00010011
0010001100001
00010011
00100100100001
00010011

001001010100001

Nullizicsrd Hag

i, L
L .

Ay nusla

10100001 is the
negative of:

01011110+1
01011111

If B[O] is 1, load (add # to

r,
licand left,
lier right,

| done

| Mlukipler sy

l

RiT]

64+16+8+4+2+1=95

60

80

00001001 An alternative is to shift the

partial product to the right
00001101

0000001001

00001001

00000101101

00001001

00001110101 (same number shifted)

o0

‘sign extension’ consists of shifting ones into the MSB if it is a

negative number.

)

11110111
00001101
1111110111 (remember sign extension)
11110111
11111010011
11110111
111110001011 (-117)
000001110101 = 1+4+16+32+64=117

1o

Here is how it would work for negative numbers. We must extend the
sign (put one’s in as we add places to the number

-9 = 11110111
X 13 = 00001101
= 1111110111 (remember sign extension)
+ 11110111
= 11111010011
+ 11110111
= 111110001011 (-117)
(-) 000001110101

100

Multiplication of Two’s Complement number by sign/magnitude number:
This is one case that works fairly well
1. Use the sign/magnitude number as the multiplier

2. If MSB is 1 (negative number), do the two’s complement thing
on the multiplicand

120

The XOR tpur e |

complements each bit &
of the multiplicand if l" ’
S=1 and the Carry in

adds S (1 if S is set). If ‘
the multiplier is
positive, the 7

multiplicand is not Vg 8

complemented and ! Guiryi m
zero is carried in.

More Multiplication Choices

Add X input Y times
Load Y into downcounter
Add X each time while counting down
Stop when counter gets to zero
Real estate cheap
Time uncertain (could be very long)
And what about negative numbers?

Shift and Add
This is the technique we have been using
Technique you learned in elementary school
Takes as many cycles as there are bits
Uses a single register for multiplier and accumulator
If care is taken with sign extension, can handle negative
numbers consistently with others.

Many problems require multiplication. In fairness to what we have just said, there are
Choices:

Table Lookup
Each input is N bits wide
ROM must store 2*N answers pim
Fast but uses a lot of Silicon

=
Ed
=
| 2

ey

Log converter
Convert to logs
Add
B —i

Antilog Converter b=]
Fast, maybe uses less Silicon +) E—,. ==y
Precision uncertain

What to do about negative num

140

It is Time for an example: so here is a physical system to control:

Control for a trolley car (Light Rail Vehicle)
Control FORCE applied to wheels
Speed command by driver (the 'Go lever')
Accommodates car weight: The difference between commanded
speed and actual car speed should be acceleration

F=MA (required force is acceleration times car mass
We will also use PI control:

Integral part drives error to zero
Proportional part gives stability

umaal LE
peed ——] _ _‘_If'l_JL anu

—I" - "'I Fares Uam d
Sl':'::-‘n-:d :_" |:+_. -\.H.- |"¢Inlm1:lr-r::r|

1600

Uses feedback control

Spraed Limar

E'“_".t{?..l Dhsrwalhis |_-.-| -:.-i:-,-._l..-.|_| -

lmirgrel pam | o cuprired deives speedl o ey ivomme
F4l makm the sypvicm mable

By measuring actual speed and feeding that back to the PI
controller, we can drive speed error (exponentially) to zero.

So in this example we will examine how to build the
controller. We assume a highly ideal drive, in which drive
force is directly proportional to commanded motor current.

170
Here is a flow chart for our system:
Timing establishes a fixed interval /-' | Tiewireg |
over which our control system does its
thing. Heaswe Spaed
Speed error is difference between
measured and commanded \>I: Slirver = Command - Spesd |
Pl is just addition of the proportional ' -
and integrated signal. Integrated is {1 Saln} FEmer + Irﬁ:ErID-r]]
added discrete signals here

‘.' MuBphy K ‘Weight
Ha: multiply will be interesting
Barid b Dria
190

As with any other design, we start with a high level block diagram: here are the
inputs and outputs.
Speed sensor and 'Go lever' are actual and required speed: through A/D
Weight is measured by a load cell or air support system pressure
Output is current command to motor/drive (which we assume works well)

Har kg rakng' Welghi
ey | Digglinl sggdmi Sy
CerreaTie CearerTier
| Canivella |
T Mebaai
LE :‘I:?. l Iluﬂr\.:.: Diwhse Jeimimsl
Lewer Codres tes Capnerner weiICT

180

Here is a possible Data Path for our Pl Controller

Integral approximated by a sum

e fpeed

Sl
RTAET _hl:-‘-LI—‘:II.L'I'I: e __.,'I‘_.-
11,1 F— |
shoo

2000

PI Controller Data Path (B)
When done with the PI, we must multiply by weight.
This fragment of data path handles that multiply as part of a shift and add

routine. Note there is also a synchronizer here
Wighi WREY
.I_|. SR I |):I ety KDY
START — o
E..
FI'I
HINH

F = Tirgh * | (ol - mpaond 34 + E.I-ﬂ - e U]

E—

210
We could control this with one large FSM, but it seems reasonable to
break the control down to several smaller (more easily developed and
tested) FSM’s, which must then be coordinated
| Timiag Tig
=2
EE =8——e= A Cuiz FSN
3
- fe=| Mgltiplinr FSM (=—e=| Couni iz 8
230

Here is where the math gets done
ALU Controls:
00 F=Invert A A K

01 F=A+1 T “"|'
10 F=A+B :
AL ALY arersis
g i
4 41
R Control
SR Controls =it g ~a-— SR Coavol
00 Hold) ™ !
01 SHIFT R BEY | 18- |‘”"I
10 CLEAR

11 F=A-B

1 LOAD]
SMUX BIE:
0 Rotate
1 Sign Extend Note: we don’t use all of these!

220

Here is my first

guess at the ne
‘Main’ FSM that ;.’ |
. J e
coordinates all. It ; T A
starts other [Whair [[T | no

processes and
waits for them to
finish before
going on. Note

—
1
r—Lr"’“]
the TIC is Geol | [PEY
produced by an [T_"II'.Tl | e
5

FSM (a counter)
that is NOT . . _ PEIEY
controlled by the o BMurply [T
main FSM. MULTEUSY T
I |
B T BT

240

