6.111 Lecture # 11

Handshaking
Topics for today:
Required when multiple lines of input are involved
Handshaking
'Concurrent' and 'Sequential’ statements This is a 'full handshake' Note that both positive going and negative going
(Another example: a counter) transitions are important in both directions
Yet another example: a small ALU
Brief discussion of resource usage Receiver indicates ready to
- receive data by setting RDY
(LA .
Soding [™ FRoidviag Sender sets data valid then
— sets DAV
Heelb a Sl banddhake”
mees Receiver reads data then
[ESRY E & Tiata SsvaLabde clears RDY
iy I- 1 r | [Foratver Brady
BT 7T T Sender acknowledges by
clearing DAV
Page 2
A Less Elaborate handshake We should be able to describe the sending and receiving agents as simple finite
state machines. Here is the FSM at the Sending end: (Full handshake)
This is often used in things like UARTSs which must deal with asynchronous data -
streams that they do not control N
AR
Sender stabilizes data and sets DAV _,-"'I weilabla] rasy ':E" oA
RGAY . k1
-—I:-\. " Receiver reads data and clears RDAV |
Srmilmg | Recriving .
ATA Sender de-asserts data and clears DAV -||I
Thivivs “parasl” Bared baler, araord fer roenp ke by !
R —— Typically, sender does not wait for /RDAV y
before setting new data. This can be used F’l,l?nﬂ". S| I
[EELY A | ing ' ' dire dwe
for detecting 'overrun' errors. library ieee; -\,_x_ ,-J- . -,
EOAY = | use ieee.std_logic_1164.all; oy

DATA TT7TTe vl NI i

entity fullsend is
generic (size: integer := 4);
Dt e B ied By port (rdy, clk : in std_logic;
datin : in std_logic_vector(size-1 downto 0);
dav : out std_logic;
datout : out std_logic_vector(size - 1 downto 0));
end fullsend;

Page 3 Page 4

And here is the FSM for the receiving end:

e
w——xugﬂed———-““¥f~—
| Wit) ol
Fl - - |
— e
i
n
\ /
T —
(2 (e
LY { | Ty
library ieee; T _--"“‘-__ - -""'ll
use ieee.std_logic_1164.all; iy
entity fullrecv is
generic (size: integer := 4);
port (dav, rclk : in std_logic;
datin : in std_logic_vector(size-1 downto 0);
rdy : out std_logic;
datout : out std_logic_vector(size - 1 downto 0));
end fullrecv;
Page 5
architecture behavioral of fullrecv is
type StateType is (w_dav, datav, r_rdy, wt_ndav);
attribute enum_encoding of StateType: type is "00 01 11 10";
signal state : StateType;
begin
rdy <= 'l' when (state = w_dav) or (state = datav) else '0';
handshake : process(rclk)
begin
if rising_edge(rclk) then
case state is
when w_dav =>
if dav = '1' then
state <= datav;
else
state <= w_dav;
end if;
when datav =>
datout <= datin;
state <= r_rdy;
when r_rdy =>
state <= wt_ndav;
when wt_ndav =>
if dav = '0' then
state <= w_dav;
else
state <= wt_ndav;
end if;
end case;
end if;
end process handshake;
end;
Page 7

architecture behavioral of fullsend is
type StateType is (wt, dat, d_av, r_dy);
attribute enum_encoding of StateType: type is "00 01 11 10";
signal state : StateType;
begin
dav <= 'l' when (state = d_av) or (state = r_dy) else '0';
handshake : process(clk)
begin
if rising_edge(clk) then
case state is
when wt =>

if rdy = '1' then
state <= dat;
else

state <= wt;
end if;
when dat =>
datout <= datin;
state <= d_av;
when d_av =>
state <= r_dy;
when r_dy =>
if rdy = '0' then
state <= wt;
else
state <= r_dy;
end if;
end case;
end if;
end process handshake;
end;

Page 6

Here is an alternative way of writing an emulator for the '163 counter
This is a register which can hold 4 bits
Counts when P=T=1, holds when P*T=0
Loads data when /LD =0
Clears data when /CL =0
All of these are synchronous: occur only on clock edges (positive edges)
Daisy-chaining is possible: RCO connects to T of next most signifigant ctr
RCOis T * Q3 * Q2 * Q1 * Q0

Here is an entity statement for this part

-- '163 emulator

library ieee;

use ieee.std_logic_1164.all;
use work.std_arith.all;

entity ctr is
generic (size: integer := 4);
port (n_clr, n_1ld, p, t, clk : in std_logic;
data: in std_logic_vector(size-1 downto 0);
count: out std_logic_vector(size-1 downto 0);
rco : out std_logic);
end ctr;

Page 8

architecture behavioral of ctr is

signal cnt_int : std_logic_vector(size - 1 downto 0);
: std_logic_vector(size - 1 downto 0);

signal int_cnt

-- internal count

signal all_ones : std_logic_vector(size downto 0);

begin -- behavioral
all_ones <= (others => 'l1');

rco <= 'l' when (t & cnt_int) = all_ones else '0';

count <= cnt_int;

logical:process(p, t, n_clr, n_l1ld, cnt_int, data)

begin
if n_clr = '0' then
int_cnt <= (others => '0');
elsif n_1d = '0' then
int_cnt <= data;
elsif p = '0' or t = '0' then
int_cnt <= cnt_int;
else
int_cnt <= cnt_int + 1;
end if;
end process logical;
state_transition:process(clk)
begin
if rising_edge(clk) then
cnt_int <= int_cnt;
end if;
end process state_transition;
end behavioral;

|

Note two processes here:

NOne has the combinatorics
associated with the logic in the part.

The other has the state transition
[~ dynamics associated with the clock
edge.

Page 9
count_2.C =
clk
count_1.D=
t*/count_1.Q * count_0.Q * n_clr *n_Id * p
+count_1.Q*n_clr*n_Id */p
+ count_1.Q */count_0.Q * n_clr * n_Id
+/t*count_1.Q *n_cir *n_Id
+n_clr*/n_Ild * data_1
count_1.C =
clk
count_0.D =
t*/count_0.Q*n_clr*n_Ild *p
+count_0.Q*n_clr*n_Id */p
+/t* count_0.Q * n_cir * n_Id
+n_clr*/n_Id * data_0
count_0.C = .
oIk These are just about what you would have expected.

Note a lot of fluff has been optimized away.

Page 11

DESIGN EQUATIONS (11:32:34)

rco =

t* count_2.Q * count_1.Q * count_0.Q * count_3.Q

count_3.D =

t* count_2.Q * count_1.Q * count_0.Q *n_clr*n_Id *p *

/count_3.Q
+n_clr*n_Id */p * count_3.Q
+/count_0.Q * n_clr * n_Id * count_3.Q
+/count_1.Q * n_clr * n_Id * count_3.Q
+/count_2.Q * n_clr * n_Id * count_3.Q
+/t*n_clr* n_Id * count_3.Q
+n_clr*/n_Id * data_3

count_3.C =
clk

count_2.D =

t*/count_2.Q * count_1.Q * count_0.Q *n_clr *n_Id * p

+count_2.Q*n_clr*n_Id */p

+ count_2.Q */count_0.Q * n_clr * n_Id
+count_2.Q */count_1.Q * n_clr * n_Id
+/t*count_2.Q * n_cir * n_Id
+n_clr*/n_Id * data_2

Page 10
RESOURCE ALLOCATION (11:32:34)
Information: Macrocell Utilization.
Description Used Max
| Dedicated Inputs | 8 | 8 | This was
| Clock/Inputs | 1| 1| implemented on
| Enable/Inputs | o | 1| al6Vs
| output Macrocells | 5 | 8
Here are som
14 / 18 =177 % ere are some
numbers
relating to how
Information: Output Logic Product Term Utilization. much of the
resources of
Node# Output Signal Name Used Max that part we
used.
12	count_3	7	8
13	count_2	6	8
14	count_1	5	8
15	count_O	4	8
16	rco	1] 8	
17	Unused	o	8
18	Unused	o	8
19	Unused	o	8
23 / 64 =35 % Page 12

library ieee;

use ieee.std_logic_1164.all;

use work.std_arith.all; -- needed for integer + signal

entity test_tri is

port(clk, oe, cnt_enb : in std_logic;

counter : buffer std_logic_vector(3 downto 0);
data : inout std_logic_vector (3 downto 0));

end test_tri;

architecture foo of test_tri is

-- signal counter : std_logic_vector(3 downto 0);

begin
process (oe, counter)
begin
if (oe = 'l') then data <= counter;
else
data <= "222Z"; -- N.B. Z must be UPPERCASE!
end if;

end process;
process (clk)
begin
if rising_edge(clk) then
if (oe = '0') and (cnt_enb = 'l') then
counter <= counter + 1;
end if;
end if;
end process;
end architecture foo;

Page 13

Now we are going to consider a strictly combinatoric circuit: an Arithmetic Logic
Unit (ALU)
It takes 2 numbers (quite narrow in this case: 2 bits each)
(Plut a carry-in bit)
And can add, subtract and shift left
This can be done in more than one way. Consider addition:

Simulation of Tri-State as an Output

Note that data(3 downto 0) are white (meaning an input) when oe is low.

o L R
File [dit Jimileta fiows Jptinm |

1. a.int<='0'&a These have differences in the
b_int<='0'&b way they are implemented,
ifc_in=0,c<=a_int + b_int and when we get to actual
ifc_in=1,c<=a_int+b_int +1 implementation of the full

alu we will find yet another

2. a_int<='0'&a&ec_in one
b_int<='0'&b & c_in

c_int<=a_int + b_int
¢ <= c_int(width downto 1)

library ieee;

use ieee.std_logic_1164.all;

use work.std_arith.all; -- needed for integer + signal
entity alu is

port(cin : in std_logic;
a, b : in std_logic_vector(1 downto 0);
alu_ctl : in std_logic_vector(1 downto 0);
c : out std_logic_vector(2 downto 0));
end alu;
Page 15

Page 14
Here is one architecture for the adder
architecture justright of alu is
signal a_int, b_int : std_logic_vector(2 downto 0);
constant add : std_logic_vector(l downto 0) := "00";
constant sub : std_logic_vector(l downto 0) := "O1";
constant shift: std_logic_vector(l downto 0) := "10";
begin
a_int <= '0' & a; Note the carry bit is
b_int <= '0' & b; used to determine
small_alu: process(a_int, b_int, cin, alu_ctl) which expression to
begin L s sl s
case alu ctl is e\jaluate. in !oglc itis a
when add => if cin = '0° kind of multiplexor.
then ¢ <= a_int + b_int; The 'opcode' is another
else ¢ <= a_int + b_int + 1; multiplexor: in this
end if; case a 3:1
when sub => ¢ <= a_int - b_int; These have overhead.
when shift => if cin = '0'
then ¢ <= a_int + a_int;
else ¢ <= a_int + a_int + 1;
end if;
when others => c¢ <= (others => '-');

end case;
end process small_alu;
end architecture justright;
Page 16

architecture justright of alu is
signal a_int, b_int, c_int : std_logic_vector(3 downto 0);
signal a_1l, n_b, upper, lower : std_logic_vector(3 downto 0);

Here is the second architecture: does the same thing...

constant add : std_logic_vector(l downto 0) := "00";
architecture justright of alu is constant sub : std_logic_vector(l downto 0)
signal a_int, b_int, c_int : std_logic_vector(3 downto 0); be:::Sta“t shift: std_logic vector(l downto 0)

constant add : std_logic_vector(l downto 0)

a_int <= '0' a & cin;

constant sub : std_logic_vector(l downto 0)

&
b_int <= '0' & b & cin; ..
constant shift: std_logic_vector (1l downto 0) al <= '0 sas&'l'; Here our final operation is just an
begin nb <='l'& (not b) & '1l'; addition, so we do more work in
a

a_int <= '0' & a & cin;
b_int <= '0' & b & cin;

small_alu: process(a_int, b_

begin
case alu_ctl is

This may or may not
have more overhead.
Note that by adding Cin
to both inputs (the first

int, cin, alu_ctl)

upper: process (
begin
case alu_ctl is

_int, a_1, alu_ctl) the earlier stages, such as doing

the two's complement for the
negative of b. We use the same
trick for concatenating the carry

when add => upper <= a_int;
when sub => upper <= a_1;
when shift => upper <= a_int;

when add => c_int <= a_int + b_int; place after the binary when others => upper <= (others => '-'); in bit to both halves of the
when sub => c_int <= a_int - b_int; point is of value) we end case; addition.
when shift =>c_int <= end process upper;

when others => c_int <= (others => '-");

end case;
end process small_alu;
c <= c_int (3 downto 1);
end architecture justright;

a_int + a_int; save at least some

notational overhead. It
cancels on subtract. But
we have to discard the
rightmost bit at the end

Page 17

lower: process(a_int, b_int, n_b, alu_ctl)

begin
case alu_ctl is

when add => lower <= b_int;

when sub => lower <= n_b;

when shift => lower <= a_int;

when others => lower <= (others =>

hy;

end case;

end

process lower;

c_int <= upper + lower;
c <= c_int (3 downto 1);
end architecture justright;

Page 18

Here is the second of the two schemes

* Here is a schematic of the way the There still is a MUX: this time of 12:4, but it
: still has only two 'steering' bits.
it — first of these schemes is Yy g
- implemented. The final selection L . .
i - is a 9:3 MUX, while there are two P TN # T 3 We discard a bit in the final result
:. 1 a 6:3 MUXes ahead of it. And ahead i * L .
i — ’ “— = | of that are some simple a_keok - b_i ¥ ’ And we also have to construct the signals that
P combinatoric circuits to generate sl s : A come to this MUX from the left.
T oq= the sums. T
o - L
[R e - E
- e =
- -y
= mkd
L N - S
L- whilt

Page 19

Page 20

This is the third option: here we
have two 12:4 MUXes and only a
simple addition to reconstruct

Here is the first of the three schemes

Information: Macrocell Utilization.

. ; Some logic is required to put
| I | together the signals at the left.

‘We discard a bit at the output

"
a_ink T uppesr
4
ad 4
Fl
a ink -
-"-J-F-.
Ll .
things
1
miad e 4 s
mub ih;
T
)
b b | e
T e
4
n E L r
a ink 4, -~

This is the second of the three schemes

Information: Macrocell Utilization.

Page 21

Description Used Max
| Dedicated Inputs | 1 1
| Clock/Inputs | 4 | 4 |

| I/0 Macrocells | 6 | 64

| Buried Macrocells | 2 | 64
| PIM Input Connects | 12 | 312 |

25 / 445

Required Max (Available)

CLOCK/LATCH ENABLE signals 0 4
Input REG/LATCH signals 0 69
Input PIN signals 5 5
Input PINs using I/0 cells 2 2
Output PIN signals 4 62
Total PIN signals 11 69
Macrocells Used 6 128
Unique Product Terms 28 640

Page 23

Max (Available)

Description Used Max

| Dedicated Inputs | 1 1
| clock/Inputs | 4 | 4 |

| 1/0 Macrocells | 7 | 64

| Buried Macrocells | 3 64
| PIM Input Connects | 12 | 312 |

27 / 445

Required

CLOCK/LATCH ENABLE signals 0 4
Input REG/LATCH signals [} 69
Input PIN signals 5 5
Input PINs using I/0 cells 2 2
Output PIN signals 5 62
Total PIN signals 12 69
Macrocells Used 8 128
Unique Product Terms 43 640

This is the third of the three schemes

Information: Macrocell Utilization.

Page 22

Max (Available)

Description Used Max

| Dedicated Inputs | 1| 1
| Clock/Inputs | 4 | 4 |

| I/0 Macrocells | 5 | 64

| Buried Macrocells | 1| 64
| PIM Input Connects | 8 | 312 |

19 / 445

Required

CLOCK/LATCH ENABLE signals [} 4
Input REG/LATCH signals 0o 69
Input PIN signals 5 5
Input PINs using I/O cells 2 2
Output PIN signals 3 62
Total PIN signals 10 69
Macrocells Used 4 128
Unique Product Terms 28 640

Page 24

	Untitled

