
6.111 Lecture # 11 

Topics for today: 

Handshaking

'Concurrent' and 'Sequential' statements


(Another example: a counter) 
Yet another example: a small ALU 
Brief discussion of resource usage 

A Less Elaborate handshake 

This is often used in things like UARTs which must deal with asynchronous data 
streams that they do not control 

Sender stabilizes data and sets DAV 

Receiver reads data and clears RDAV 

Sender de-asserts data and clears DAV 

Typically, sender does not wait for /RDAV 
before setting new data. This can be used 
for detecting 'overrun' errors. 
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Handshaking 

Required when multiple lines of input are involved 

This is a 'full handshake' Note that both positive going and negative going 
transitions are important in both directions 

Receiver indicates ready to 
receive data by setting RDY 

Sender sets data valid then 
sets DAV 

Receiver reads data then 
clears RDY 

Sender acknowledges by 
clearing DAV 
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We should be able to describe the sending and receiving agents as simple finite 
state machines. Here is the FSM at the Sending end: (Full handshake) 

library ieee; 
use ieee.std_logic_1164.all; 

entity fullsend is 
generic (size: integer := 4); 
port (rdy, clk : in std_logic; 

datin : in std_logic_vector(size-1 downto 0);

dav : out std_logic;

datout : out std_logic_vector(size - 1 downto 0));


end fullsend; 
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And here is the FSM for the receiving end: 

library ieee; 
use ieee.std_logic_1164.all; 

entity fullrecv is 
generic (size: integer := 4); 
port (dav, rclk : in std_logic; 

datin : in std_logic_vector(size-1 downto 0);

rdy : out std_logic;

datout : out std_logic_vector(size - 1 downto 0));


end fullrecv; 
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architecture behavioral of fullrecv is 
type StateType is (w_dav, datav, r_rdy, wt_ndav); 
attribute enum_encoding of StateType: type is "00 01 11 10"; 
signal state : StateType; 

begin 
rdy <= '1' when (state = w_dav) or (state = datav) else '0'; 

handshake : process(rclk) 
begin 

if rising_edge(rclk) then 
case state is 

when w_dav => 
if dav = '1' then 

state <= datav; 
else 

state <= w_dav; 
end if; 

when datav => 
datout <= datin; 
state <= r_rdy; 

when r_rdy => 
state <= wt_ndav; 

when wt_ndav => 
if dav = '0' then 

state <= w_dav; 
else 

state <= wt_ndav; 
end if; 

end case; 
end if; 

end process handshake; 
end; 
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architecture behavioral of fullsend is 
type StateType is (wt, dat, d_av, r_dy); 
attribute enum_encoding of StateType: type is "00 01 11 10"; 
signal state : StateType; 

begin 
dav <= '1' when (state = d_av) or (state = r_dy) else '0'; 

handshake : process(clk) 
begin 

if rising_edge(clk) then 
case state is 

when wt => 
if rdy = '1' then 
state <= dat; 
else 

state <= wt; 
end if; 

when dat => 
datout <= datin; 
state <= d_av; 

when d_av => 
state <= r_dy; 

when r_dy => 
if rdy = '0' then 

state <= wt; 
else 

state <= r_dy; 
end if; 

end case; 
end if; 

end process handshake; 
end; 
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Here is an alternative way of writing an emulator for the '163 counter 
This is a register which can hold 4 bits 
Counts when P=T=1, holds when P*T=0 
Loads data when /LD = 0 
Clears data when /CL = 0 
All of these are synchronous: occur only on clock edges (positive edges) 
Daisy-chaining is possible: RCO connects to T of next most signifigant ctr 
RCO is T * Q3 * Q2 * Q1 * Q0 

Here is an entity statement for this part 

-- '163 emulator 
library ieee; 
use ieee.std_logic_1164.all; 
use work.std_arith.all; 

entity ctr is 
generic (size: integer := 4); 
port (n_clr, n_ld, p, t, clk : in std_logic; 

data: in std_logic_vector(size-1 downto 0); 
count: out std_logic_vector(size-1 downto 0); 
rco : out std_logic); 

end ctr; 
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architecture behavioral of ctr is 
signal cnt_int : std_logic_vector(size - 1 downto 0); 
signal int_cnt : std_logic_vector(size - 1 downto 0); -- internal count 
signal all_ones : std_logic_vector(size downto 0); 

begin -- behavioral 
all_ones <= (others => '1'); 
rco <= '1' when (t & cnt_int) = all_ones else '0'; 
count <= cnt_int; 

logical:process(p, t, n_clr, n_ld, cnt_int, data) 
begin 
if n_clr = '0' then 

elsif n_ld = '0' then 
int_cnt <= data; 

int_cnt <= cnt_int; 
else 

int_cnt <= cnt_int + 1; 
end if; 
end process logical; 

state_transition:process(clk) 
begin 
if rising_edge(clk) then 
cnt_int <= int_cnt; 

end if; 
end process state_transition; 
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int_cnt <= (others => '0'); 

elsif p = '0' or t = '0' then 

Note two processes here: 

One has the combinatorics 
associated with the logic in the part. 

The other has the state transition 
dynamics associated with the clock 
edge. 

count_2.C = 

clk 

count_1.D = 

t * /count_1.Q * count_0.Q * n_clr * n_ld * p

+ count_1.Q * n_clr * n_ld * /p

+ count_1.Q * /count_0.Q * n_clr * n_ld 

+ /t * count_1.Q * n_clr * n_ld 

+ n_clr * /n_ld * data_1 

count_1.C = 

clk 

count_0.D = 

t * /count_0.Q * n_clr * n_ld * p

+ count_0.Q * n_clr * n_ld * /p

+ /t * count_0.Q * n_clr * n_ld 

+ n_clr * /n_ld * data_0 

count_0.C = 

clk These are just about what you would have expected. 
Note a lot of fluff has been optimized away. 
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DESIGN EQUATIONS (11:32:34) 

rco = 

t * count_2.Q * count_1.Q * count_0.Q * count_3.Q 

count_3.D = 

t * count_2.Q * count_1.Q * count_0.Q * n_clr * n_ld * p *

/count_3.Q 

+ n_clr * n_ld * /p * count_3.Q

+ /count_0.Q * n_clr * n_ld * count_3.Q 

+ /count_1.Q * n_clr * n_ld * count_3.Q 

+ /count_2.Q * n_clr * n_ld * count_3.Q 

+ /t * n_clr * n_ld * count_3.Q 

+ n_clr * /n_ld * data_3 

count_3.C = 

clk 

count_2.D = 

t * /count_2.Q * count_1.Q * count_0.Q * n_clr * n_ld * p

+ count_2.Q * n_clr * n_ld * /p

+ count_2.Q * /count_0.Q * n_clr * n_ld 

+ count_2.Q * /count_1.Q * n_clr * n_ld 

+ /t * count_2.Q * n_clr * n_ld 

+ n_clr * /n_ld * data_2 

RESOURCE ALLOCATION (11:32:34) 

Information: Macrocell Utilization. 

Description Used Max 
______________________________________ 
| Dedicated Inputs | 8 | 8 | 
| Clock/Inputs | 1 | 1 | 
| Enable/Inputs | 0 | 1 | 
| Output Macrocells  | 5 | 8 | 
______________________________________ 

14 / 18 = 77 % 

Information: Output Logic Product Term Utilization. 

Node# Output Signal Name Used Max 
________________________________________ 
| 12 | count_3 | 7 | 8 | 
| 13 | count_2 | 6 | 8 | 
| 14 | count_1 | 5 | 8 | 
| 15 | count_0 | 4 | 8 | 
| 16 |  rco  | 1 | 8 | 
| 17 | Unused | 0 | 8 | 
| 18 | Unused | 0 | 8 | 
| 19 | Unused | 0 | 8 | 
________________________________________ 

23 / 64 = 35 % 
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This was 
implemented on 
a 16V8 

Here are some 
numbers 
relating to how 
much of the 
resources of 
that part we 
used. 
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library ieee;

use ieee.std_logic_1164.all;

use work.std_arith.all; -- needed for integer + signal

entity test_tri is

port(clk, oe, cnt_enb : in std_logic; 

counter : buffer std_logic_vector(3 downto 0); 
data : inout std_logic_vector(3 downto 0)); 

end test_tri;

architecture foo of test_tri is

-- signal counter : std_logic_vector(3 downto 0);

begin

process (oe, counter) 
begin 
if (oe = '1') then data <= counter; 
else 

data <= "ZZZZ"; -- N.B. Z must be UPPERCASE! 
end if; 

end process; 
process (clk) 
begin 
if rising_edge(clk) then 
if (oe = '0') and (cnt_enb = '1') then 

counter <= counter + 1; 
end if; 

end if; 
end process; 

end architecture foo; 
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Now we are going to consider a strictly combinatoric circuit: an Arithmetic Logic 
Unit (ALU) 

It takes 2 numbers (quite narrow in this case: 2 bits each) 
(Plut a carry-in bit) 

And can add, subtract and shift left 
This can be done in more than one way. Consider addition: 

1. a_int <= '0' & a 

b_int <= '0' & b 

if c_in = 0, c <= a_int + b_int 

if c_in = 1, c <= a_int + b_int + 1 

2.. 	 a_int <= '0' & a & c_in 

b_int <= '0' & b & c_in 

c_int <= a_int + b_int 

c <= c_int(width downto 1) 

These have differences in the 
way they are implemented, 
and when we get to actual 
implementation of the full 
alu we will find yet another 
one 

library ieee;


use ieee.std_logic_1164.all;


use work.std_arith.all; -- needed for integer + signal


entity alu is


port(cin : in std_logic;

a, b : in std_logic_vector(1 downto 0); 

alu_ctl : in std_logic_vector(1 downto 0);

c : out std_logic_vector(2 downto 0)); 

end alu; 
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Simulation of Tri-State as an Output 

Note that data(3 downto 0) are white (meaning an input) when oe is low. 
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Here is one architecture for the adder 

architecture justright of alu is 
signal a_int, b_int : std_logic_vector(2 downto 0); 
constant add : std_logic_vector(1 downto 0) := "00"; 
constant sub : std_logic_vector(1 downto 0) := "01"; 
constant shift: std_logic_vector(1 downto 0) := "10"; 

begin 
a_int <= '0' & a; 
b_int <= '0' & b; 

small_alu: process(a_int, b_int, cin, alu_ctl) 
begin 
case alu_ctl is 
when add => if cin = '0' 

then c <= a_int + b_int; 
else c <= a_int + b_int + 1; 

end if; 
when sub => c <= a_int - b_int; 
when shift => if cin = '0' 

then c <= a_int + a_int; 
else c <= a_int + a_int + 1; 

end if; 
when others => c <= (others => '-'); 

end case; 
end process small_alu; 

end architecture justright; 

Note the carry bit is

used to determine

which expression to

evaluate: in logic it is a

kind of multiplexor.

The 'opcode' is another

multiplexor: in this

case a 3:1

These have overhead.
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Here is the second architecture: does the same thing... 

architecture justright of alu is 
signal a_int, b_int, c_int : std_logic_vector(3 downto 0); 
constant add : std_logic_vector(1 downto 0) := "00"; 
constant sub : std_logic_vector(1 downto 0) := "01"; 
constant shift: std_logic_vector(1 downto 0) := "10"; 

begin 
a_int <= '0' & a & cin; 
b_int <= '0' & b & cin; 

small_alu: process(a_int, b_int, cin, alu_ctl) 
begin 
case alu_ctl is 
when add => c_int <= a_int + b_int; 
when sub => c_int <= a_int - b_int; 
when shift =>c_int <= a_int + a_int; 
when others => c_int <= (others => '-'); 

end case; 
end process small_alu; 
c <= c_int(3 downto 1); 

end architecture justright; 

This may or may not 
have more overhead. 
Note that by adding Cin 
to both inputs (the first 
place after the binary 
point is of value ) 
save at least some 
notational overhead. It 
cancels on subtract. But 
we have to discard the 
rightmost bit at the end 

we 
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Here is a schematic of the way the 
first of these schemes is 
implemented. The final selection 
is a 9:3 MUX, while there are two 
6:3 MUXes ahead of it. And ahead 
of that are some simple 
combinatoric circuits to generate 
the sums. 
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architecture justright of alu is 
signal a_int, b_int, c_int : std_logic_vector(3 downto 0); 
signal a_1, n_b, upper, lower : std_logic_vector(3 downto 0); 
constant add : std_logic_vector(1 downto 0) := "00"; 
constant sub : std_logic_vector(1 downto 0) := "01"; 
constant shift: std_logic_vector(1 downto 0) := "10"; 

begin 
a_int <= '0' & a & cin; 
b_int <= '0' & b & cin; 
a_1 <= '0' & a & '1'; 
n_b <= '1' & (not b) & '1'; 

upper: process(a_int, a_1, alu_ctl) 
begin 

case alu_ctl is 
when add => upper <= a_int; 
when sub => upper <= a_1; 
when shift => upper <= a_int; 
when others => upper <= (others => '-'); 

end case; 
end process upper; 

lower: process(a_int, b_int, n_b, alu_ctl) 
begin 

case alu_ctl is 
when add => lower <= b_int; 
when sub => lower <= n_b; 
when shift => lower <= a_int; 
when others => lower <= (others => '-'); 

end case; 
end process lower; 
c_int <= upper + lower; 
c <= c_int(3 downto 1); 

end architecture justright; 

Here our final operation is just an 
addition, so we do more work in 
the earlier stages, such as doing 
the two's complement for the 
negative of b. We use the same 
trick for concatenating the carry 
in bit to both halves of the 
addition. 
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Here is the second of the two schemes 

There still is a MUX: this time of 12:4, but it 
still has only two 'steering' bits. 

We discard a bit in the final result 

And we also have to construct the signals that 
come to this MUX from the left. 
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This is the second of the three schemes 

Information: Macrocell Utilization. 

Description Used Max 
______________________________________ 
| Dedicated Inputs | 1 | 1 | 
| Clock/Inputs | 4 | 4 | 
| I/O Macrocells  | 6 | 64 | 
| Buried Macrocells  | 2 | 64 | 
| PIM Input Connects | 12 | 312 | 
______________________________________ 

25 / 445 = 5 % 

Required Max (Available)

CLOCK/LATCH ENABLE signals 0 4

Input REG/LATCH signals 0 69

Input PIN signals 5 5

Input PINs using I/O cells 2 2

Output PIN signals 4 62


Total PIN signals 11 69

Macrocells Used 6 128

Unique Product Terms 28 640
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This is the third option: here we 
have two 12:4 MUXes and only a 
simple addition to reconstruct 
things. 

Some logic is required to put 
together the signals at the left. 

We discard a bit at the output 

Here is the first of the three schemes 
Information: Macrocell Utilization. 

Description Used Max 
______________________________________ 
| Dedicated Inputs | 1 | 1 | 
| Clock/Inputs | 4 | 4 | 
| I/O Macrocells  | 7 | 64 | 
| Buried Macrocells  | 3 | 64 | 
| PIM Input Connects | 12 | 312 | 
______________________________________ 

27 / 445 = 6 % 

Required Max (Available)

CLOCK/LATCH ENABLE signals 0 4

Input REG/LATCH signals 0 69

Input PIN signals 5 5

Input PINs using I/O cells 2 2

Output PIN signals 5 62


Total PIN signals 12 69

Macrocells Used 8 128

Unique Product Terms 43 640
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This is the third of the three schemes 

Information: Macrocell Utilization. 

Description Used Max 
______________________________________ 
| Dedicated Inputs | 1 | 1 | 
| Clock/Inputs | 4 | 4 | 
| I/O Macrocells  | 5 | 64 | 
| Buried Macrocells  | 1 | 64 | 
| PIM Input Connects | 8 | 312 | 
______________________________________ 

19 / 445 = 4 % 

Required Max (Available)

CLOCK/LATCH ENABLE signals 0 4

Input REG/LATCH signals 0 69

Input PIN signals 5 5

Input PINs using I/O cells 2 2

Output PIN signals 3 62


Total PIN signals 10 69

Macrocells Used 4 128

Unique Product Terms 28 640
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