
Positive Edge Triggered devices
Often call it /CLK because setup
is when the clock signal is LOW

6.111 Lecture # 10

Topics for today:

Some more details of VHDL and more examples
Shift Register (as in the 74LS194)

Note Lab 2 design should be done by Wednesday

Page 1

VHDL Identifiers

Case InsenSitivE (but best not to rely on this)

First character must be a letter.

Letters, Digits, and Underscores (only)
Two underscores in succession are not allowed.
The last character cannot be an underscore.

Using reserved words is NOT allowed.

Later versions of emacs use color to distinguish reserved words (and other things)
Using reserved words usually provokes an understandable error comment.

Legal Examples
CLK, Three_StateEnable, h23, Reg_12

Illegal Examples
_clk, 3_State_Enable, large#num, clk_, Three__State, register, begin

Page 3

But first,… clock Conventions
This is only a convention but it is widely used. What is important is when
devices are triggered.

Setup time
here

Setup time
here

Positive Edge Triggered devices
Often call it /CLK because setup
is when the clock signal is LOW
Most registers are like this

Negative Edge Triggered devices
Often call it CLK because setup
is when the clock signal is HIGH
J-K flip flops tend to be like this

Page 2

VHDL Reserved Words

Some are

abs access after begin

array disconnect file

guarded impure postponed

rem unaffected wait

There are 97: too many to remember!

This is another good reason for "incremental" compilation.

Start with something that compiles and add code a block at a time

Page 4

VHDL Values: Defined in IEEE 1164.

Values you are most likely to use are '0', '1', '-', 'Z'
'-' (hyphen) is 'don't care'
'Z' (MUST Be upper case) is 'High Impedance'

Vectors are strings
Remember VHDL is strongly typed:

a+b is valid ONLY if a and b have the same length
To assign to a one bit longer number (as in to accommodate

overflow)

c <= ('0' & a) + ('0' & b)

and of course c must be defined to be one bit longer than a and b

Designation of constants:

'-' is a character

"---" is a string (vector) of length 3

& is the concatenation operator:

"01" & "111" is "01111" and so is '0' & "1111"
Page 5

Packages Here is a very small package construction

Entities need not be in the same file as the package declaration.

library ieee;
use ieee.std_logic_1164.all;
entity mux2to1 is port (
a, b, sel: in std_logic;
c: out std_logic);

end mux2to1;

architecture archmux2to1 of mux2to1 is
begin
c <= (a and not sel) or (b and sel);

end archmux2to1;

This file has the
entity and
architecture

ibrary ieee; library and use statements
use ieee.std_logic_1164.all;
package mymuxpkg is
component mux2to1 port (
a, b, sel: in std_logic;
c: out std_logic);

end component;
end mymuxpkg;

This file has
the
component
declaration

-- note repeated

-- identical port list

Page 7

library ieee;

use ieee.std_logic_1164.all;

use work.std_arith.all; -- needed for integer + signal

entity test_tri is

port(clk, oe, cnt_enb : in std_logic;

data : inout std_logic_vector(7 downto 0));
Here is the use ofend test_tri;
inout (tristate)

architecture foo of test_tri is
signal counter : std_logic_vector(7 downto 0);
begin
process (oe, counter)
begin
if (oe = '1') then data <= counter;
else

data <= "ZZZZZZZZ"; -- N.B. Z must be UPPERCASE!
end if;

end process;

process (clk)
begin
if rising_edge(clk) then
if (oe = '0') and (cnt_enb = '1') then

counter <= counter + 1;
end if;

end if;
end process;

end architecture foo; Page 6

Now we can use that package in some top level code:

--no, I don’t think this does anything useful…

library ieee;

use ieee.std_logic_1164.all;

entity toplevel is port (

s: in std_logic;

p, q, r: in std_logic_vector(2 downto 0);

t: out std_logic_vector(2 downto 0));

end toplevel;
use work.mymuxpkg.all; -- this is what we called the package
architecture archtoplevel of toplevel is

signal i: std_logic_vector(2 downto 0);
begin

-- the first two instantiations are named associations
m0: mux2to1 port map (a=>i(2), b=>r(0), sel=>s, c=>t(0));
m1: mux2to1 port map (c=>t(1), b=>r(1), a=>i(1), sel=>s);
-- the last instantiation is a positional association
m2: mux2to1 port map (i(0), r(2), s, t(2));
i <= p and not q;

end archtoplevel;

Page 8

Predefined Attributes

s'event is read as "s tick event" where s is a signal name.

rising_edge(event) is the same as

(s'event and event = '1')

A transaction occurs every time a signal is evaluated, whether or not the
signal value changes.

Evaluation of one signal can force evaluation of other signals

Page 9

74LS194: Bidirectional, loadable shift register

S1 S0 QA QB QC QD
1 1 A B C D Load
0 1 R QA0 QB0 QC0 Shift Right
1 0 QB0 QC0 QD0 L Shift Left
0 0 QA0 QB0 QC0 QD0 Hold

The part also has an asynchronous clear

So now we are going to write the functionality of this part in VHDL

Array Attributes are particularly useful with generic array sizes

signal s : std_logic_vector(7 downto 3)

s'left = 7 s'high = 7

s'right = 3 s'low = 3

s'length = 5

You can even build multiply indexed arrays:

type rom is array (0 to 6, 3 down to 0) of std_logic;
signal r : rom;

r'left(1) = 0 r'high(1) = 6
r'left(2) = 3 r'high(2) = 3

r'right(1) = 6 r'low(1) = 0
r'right(2) = 0 r'low(2) = 0

r'length(1) = 7
r'length(2) = 4

Page 10

--variable width shift register (like a '194)

library ieee;

use ieee.std_logic_1164.all;

use work.std_arith.all;

entity shift_reg is
generic (width : integer := 4); -- to start
port (data : in std_logic_vector(width-1 downto 0); -- input

s: in std_logic_vector(1 downto 0);

clk, sl, sr : in std_logic; -- shift bits

output : out std_logic_vector (width-1 downto 0));

end shift_reg;

Note that by using the generic width we could actually use this code to emulate
shift registers of arbitrary width. The ‘194 is 4 bits wide

The use of positional attributes makes this variable width work

Page 11 Page 12

-- purpose: simulation of a '194 shift register
architecture first_try of shift_reg is
signal int : std_logic_vector(width-1 downto 0); -- used internally
constant right : std_logic_vector(1 downto 0) := "01";
constant left : std_logic_vector(1 downto 0) := "10";
constant load : std_logic_vector(1 downto 0) := "11";
constant hold : std_logic_vector(1 downto 0) := "00";

begin -- first_try
output <= int;
shift_reg: process(clk)
begin

if rising_edge(clk) then
case s is

when right =>
int <= sr & int(int'left downto int'right+1);

when left =>
int <= int(int'left-1 downto int'right) & sl;

when load =>
int <= data;

when hold =>
int <= int;

when others =>
int <= (others => '-');

end case;
end if;

end process;
end first_try;

Page 13

Two More attributes that Are Useful Sometimes

Sum splitting occurs when more than 16 product terms are required.
(This depends, of course, on what part you are compiling to)

balanced (default) has better timing but uses more macrocells.
cascaded uses fewer macrocells and is slower.

attribute sum_split of mysig: signal is cascaded;
Attribute sum_split of mysig: signal is balanced;

The synthesis_off attribute is used to make the signal a factoring point.
Making a signal a factoring point can result in a reduction of product terms

for a subsequent signal. It also avoids the possibility that a signal can be optimized
away.

Registered equations are natural factoring points so only use synthesis_off on
combinational signals.

attribute synthesis_off of sel: signal is true;

Page 15

User Defined Attributes: often useful

type state_type is (idle, state1,state2);€
attribute state_encoding of state_type: is sequential;€
-- or one_hot, zero_hot, gray€

attribute enum_encoding of state_type: is "11 01 00";€
-- or whatever assignment you want to make€

within an entity: to set pin numbers:
attribute pin_numbers of counter:Entity is
"clk:13 reset:2" &
" count(3):3";

-- Note the space before count(3) above

within an entity: to reserve pin numbers (or avoid contention as in your kits)
attribute pin_avoid of mydesign: entity is "21 24 26";

-- the following are less likely to be useful:

attribute lab_force of mysig: signal is a1;€
attribute node_num of buried: signal is 202;€
attribute low_power of mydesign: entity is "b g e";€
attribute slew_rate of count(3): signal is slow; -- or fast€

Page 14

-- attempt at short pulse catcher

library ieee; You may remember this

use ieee.std_logic_1164.all; example, which uses the
entity spulse is port(synthesis_off directive.

N_GO, CLK, S_CLK: in std_logic;
aout, n_aout, xout, p: out std_logic);

end spulse; On the next page are
architecture behavioral of spulse is excerpts from the report
signal A , N_A, X, N_X, N_CLK : std_logic; file for this code and for
attribute synthesis_off of A : signal is true; the same code with the
attribute synthesis_off of N_A : signal is true; synthesis_off directive

begin commented out.
A <= (not N_GO) or (not N_A);
N_A <= (not A) or (not N_X);

N_X <= (not X);

P <= X and N_CLK;

N_CLK <= not (S_CLK);

aout <= A;

xout <= X;

n_aout <= N_A;

ff: process(CLK)

begin -- process

if rising_edge(CLK) then

X <= A;

end if;
end process;

end behavioral; Page 16

So here is whatg gets synthesized:
And without attribute synthesis_off

With attribute synthesis_off

DESIGN EQUATIONS
(12:40:06)

p =
xout.Q * /s_clk

xout.D =
aout

xout.C =
clk

/aout =
n_go * n_aout

/n_aout =
/xout.Q * aout

DESIGN EQUATIONS
(12:41:12)

p =
xout.Q * /s_clk

xout.D =
aout

xout.C =
clk

/n_aout =
aout * /xout.Q

aout =
aout * /xout.Q

+ /n_go

Page 17

