
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.111 Introductory Digital Systems Laboratory
Lecture # 1

The Goal of 6.111
Transform students into engineers,
capable of designing and implementing
complex digital systems.

Use a hardware description Language (VHDL)

Implement with multiple existing integrated circuits

Prior digital design experience is not necessary

Some experience with circuits is a prerequisite
(6.002, 6.071 or equivalent)

6.004 is NOT a prerequisite

Take 6.004 first

Take 6.111 first

Take 6.004 and 6.111 in the same term

Objectives and Outcomes

On completion of 6.111 students will have confidence in their abilities
to conceive and carry out a complex digital systems design project in a
team of two or three people. More broadly, they will be ready to
handle substantial, challenging design problems. In particular,
students will be able to:
1. explain the elements of digital system abstractions such as digital logic,

Boolean algebra, flip-flops and finite-state machines (FSMs).

2, design simple digital systems based on these digital abstractions, and the

"digital paradigm" including discrete, sampled information.

3. use basic digital tools and devices such as digital oscilloscopes, PALs,

PROMs, and VHDL.

4. work in a design team that can propose, design, successfully implement, and

report on a digital circuit design project.

5. communicate the purpose and results of a design project in written and oral

presentations.

Approach:

Knowledge:
Theory of Digital Electronic Systems
Examples
Design Rules
Guidelines (from experience)

Environment:
Lab Space
Equipment: logic analyzers, oscilloscopes,

computers, design software

Challenges
Quizzes
Problem Sets
Lab Exercises
Project

Lab 1:
Find the lab and wire something
Learn about equipment: 'scopes, logic

analysers
Program and test a PAL (A PLD)

Lab 2:
Design and implement a complicated FSM
Use VHDL to program a CPLD

Lab 3:
Design exercise using multiple FSM’s
Use VHDL to program a complex FPGA

Final Project:

Unstructured Assignment

Unstructured Solution

You and the staff negotiate a proposal

Proposal Conference
Design Review(s)

Early
Detailed

Staff will provide
Help with design, debugging and testing
Encouragement
Praise (as success evolves)

Necessary Details: Grading and Collaboration
Quizzes (2): 20%
Problem Sets (5) 10%
Lab Exercises (3) 35%
Final Project 35%

Collaboration Policy:
Please be civil and don't hog resources such as computers
Do not collaborate with anyone on quizzes
Do not copy anything from anyone else
You may discuss homework and labs, then do them individually:

turn in only your own work

Project phase
Collaboration is welcomed
Get help from anyone who will help you
Copying material is OK (with proper attribution)

Pep Talk: Be on Time

Start Early: Don’t wait until near the deadline

Keep with it: finish early

Resources are finite

Equipment in the lab

TA’s can be of help, but are pressed late

Do not expect unlimited help late in a lab

We impose late penalties:

Homework MUST be on time

Lab assignments: 20% per day

Final Project: Must be done on time

An Example: Drive a 7 Segment Display

The seven-segment display can be made to display any of, say,
16 characters (0-F).

Input Character Segment 1

0 0 0 0 0 ON
0 0 0 1 1 OFF
0 0 1 0 2 ON
0 0 1 1 3 ON
0 1 0 0 4 OFF
0 1 0 1 5 ON
0 1 1 0 6 ON
0 1 1 1 7 ON
1 0 0 0 8 ON
1 0 0 1 9 ON
1 0 1 0 A ON
1 0 1 1 b OFF
1 1 0 0 c OFF
1 1 0 1 d OFF
1 1 1 0 E ON
1 1 1 1 F ON

Another Example: Logic to determine if a stoplight is working:

Now obsolete, but in Massachusetts
Red+Yellow used to mean “walk” So
the check must allow for that
combination plus any ONE light ON

To implement 'logic', we:

Start with Gates: AND, OR, NAND, NOR,

Progress to Building Blocks which will become paradigms:
Registers, Counters, Shift Registers, Multiplexors, Selectors, etc.

These things you can wire together and they are all in your kit

Then we progress to more complex programmable logic devices:
PALs, CPLD's and FPGA's and we need a language to use to
program them. This brings us to VHDL

VHDL

VHSIC Hardware Description Language

Language to express digital systems
Structural
Behavioral
Timing

Rich and powerful language
Basic standard environment
Supports both

Hardware concepts
Software concepts

-- Massachusetts (Obsolete) Stoplight Example

library ieee;

use ieee.std_logic_1164.all;

entity check is port(

r, y, g: in std_logic;

ok: out std_logic;

signal t1, t2, t3: inout std_logic);

end check;

architecture logical of check is

begin

my_label: process(r, y, g, t1, t2, t3) begin

t1 <= r and (not g);

t2 <= y and (not g);

t3 <= (not r) and (not y) and g;

ok <= t1 or t2 or t3;

end process;

end logical;

Here is a

a PLD

simulation of
that function
implemented in

Inputs (3)

Output

To do to get started in 6.111:

Fill in the form on the last page of the handout. Only your
Tuesday schedule is important Turn it in NOW.

Go get lab kit -- they should be ready by Friday

Get a computer account -- log onto Sunpal1 or Sunpal2 with
your Athena login.

Recitation assignments will be posted in the lab, target date
is Friday

