Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.111 - Introductory Digital Systems Laboratory
Laboratory 1

Logic Analyzers, Digital Oscilloscopes, and PALs

[ssued — September 4, 2002
Due: September 16, 2002

Introduction

This initial lab assignment introduces you to the single most important measuring equip-
ment that you will use to test and verify your digital designs. This instrument is a multi-
channel logic analyzer with an integrated two-channel digital oscilloscope. In conjunction
with learning about the use of this instrument, you are also required to interact with the
laboratory computer systems to program a PAL and then to use the logic analyzer and
digital oscilloscope to verify the correct operation of the digital circuitry implemented by
this PAL. You are also required to implement the logic specified by the VHDL file with SSI
(Small Scale Integration) and to verify what it does.

Before you begin, please read the handouts you have been given on the lab equipment
and rules. These should answer many of your questions. If you have any other questions or
problems — ask!

Procedure

This lab is divided into several exercises to guide you through the design, construction,
and debugging process. You will be asked to wire circuits for many of the exercises. Save
all of these circuits until you have completed the entire lab as many of these circuits will be
reused in subsequent parts of this lab, perhaps even in later labs.

1. Read and understand the whole assignment.
2. Design everything - on paper as well as in your head.

3. Build, test, debug, and fix each section in turn. You do NOT have to get checked-off
on a section before proceeding to the next section.

4. Correct the documentation.
5. Prepare your report which should include:

e your name, recitation time, and T.A.’s name

e logic diagrams for the PAL (you need not reproduce logic diagrams shown in this
assignment)

6.111 — Laboratory 1 2

logic diagrams for the SSI circuitry used to implement the logic specified in the
VHDL code. Do not forget to include pin numbers and location information.

test results

waveform sketches

answers to specific questions posed in the exercises.

Exercise I: TTL Static Electrical Characteristics

The Boolean values of ‘1’ and ‘0’ are represented by voltage levels in electronic logic. The
voltage levels and other electrical characteristics are not standardized from one logic family
to another. The primary family of logic to be used in 6.111 is TTL (Transistor—Transistor
Logic).

The first and most elementary gate developed in TTL is the NAND gate, the circuit of
which is shown in Figure 1. Other gates in the TTL family performing various other logical
functions will have different circuit topologies, but will be electrically compatible with each
other.

Because of variations in the manufacturing process, it is not reasonable to expect that
each gate will possess identical electrical characteristics. Rather, slight differences will be
found from one batch of gates to another. The manufacturer, however, specifies an ac-
ceptable range of gate input and output voltage levels over which proper operation can be
guaranteed. The manufacturer-guaranteed voltage ranges for inputs and outputs are shown
in Figure 2 (for Texas Instruments’ TTL integrated circuits). THESE LEVELS ARE
IMPORTANT: REMEMBER THEM!

It is sometimes necessary to create fixed logic levels not derived from a TTL gate to
properly terminate an unused input on a logic gate. To force a gate input to logic ‘0’, the
input may be directly grounded (zero volts). To force a gate input to logic ‘1, the input
may be tied to +5 V as shown in Figure 3.

NOTE: You will find that an unconnected input will often behave as if it were at
LOGIC 1. However, sometimes it will seem like a LOGIC 0. It is bad practice
to leave inputs unconnected, as they are then vulnerable to noise.

Wire two NAND gates from a 74LS00 chip as shown in Figure 4. Do not forget to wire
power and ground! These connections are (most) often omitted from logic diagrams when
the lower left pin is GND and the upper right pin is +5 volts. Often the top of the chip has
a small circular cutout as shown in Figure 5. Amazingly, some ICs “almost work” when the
ground wire is omitted.

Ground the input of the inverter and measure the output voltage. (Use an oscilloscope
for voltage measurements; be sure it is calibrated.)

Connect the input to logic ‘1’ and repeat the measurement.

6.111 — Laboratory 1

19
ak 216k <130
Inputs
X, —e 7 Output
X

e
-

Figure 1: Basic TTL NAND Circuit

Volts
—Vee—+(5.0) 5
Guaranteed
Permissible Output 1
Input 1
Vor—(2.7) +——

on—~(27) High Noise Margin
— Vi —+(2.0) 1

Vin——(1.3) Switching Threshold
——— Vi1 (0.8) +—n . .

o | Low Noise Margin
Permissible Input 0 | Vo, —(0.4) FGuaranteed Output 0

Figure 2: LSI TTL Voltage Ranges

6.111 — Laboratory 1

T e

LogicO Logic 1l

Figure 3: Termination of Unused Inputs.

o To provide an output

load (or two)7
! 3 4.5 6
=) 7) o

V oltage M easurement Point

Figure 4: Logic Level Measurements

_/ VvV CC

+5
741500

GND 7 3

Figure 5: Power Supply Wiring for 74LS00

6.111 — Laboratory 1 5

Exercise II: TTL Dynamic Electrical Characteristics

Three timing parameters associated with the speed of digital logic gates are the prop-
agation delay time tpp, and the output signal rise and fall times, tgr and tr. Propagation
delay is a measure of how much time is required for the electronic circuitry within the gate
to change state. The rise and fall times measure how fast a binary signal can change state.
These two dynamic factors are illustrated in Figure 6. V;;, and V;g are thresholds which say
when an input is valid. Vpr and Vg are thresholds which say when outputs are valid.

The effect of propagation delay time can be demonstrated by the circuit of Figure 7.

Propagation Delay Time and Rise Time

Construct a ring oscillator using five TTL inverters (74LS04) and as little wire as is
reasonably possible. From this circuit, determine the average propagation delay of a TTL
INVERTER by measuring the period of oscillation.

HINT: Think about the number of gates a signal must travel through to complete a full
period of oscillation.

Transmission Line Effects

Insert a long piece of wire (2-3 feet) in the ring. Observe how this extra length of circuit
affects the signal.

MORAL: Minimize the wire length whenever possible.

One Gate

What happens when you let n = 1 and wire the output of an inverting gate to its input?
(If it oscillates, add a capacitor from output to ground.)

Exercise III: Flip Flop Operation Times

Clock

A pulse may be defined (in the digital sense) as a signal which is in one state most of
the time and transits to the opposite state only for periods of short (usually fixed) duration.
Positive pulses are normally in the LOW state, changing to HIGH for short periods of time.
The time in the HIGH state is thus the pulse width. A good practice to follow in designing
digital systems is to NEVER route pulses through mechanical switches. If the switch were
to be operated while the pulse was active, then the possible contact bounce might cause
the output of the switch to appear as several pulses rather than only one. Capacitance and

6.111 — Laboratory 1

Figure 6: Dynamic Characteristics Of A Gate

1:23: 4 5:6 13:12 11:10

Figure 7: Ring Oscillator

6.111 — Laboratory 1 7

11| 10| 9 §

14
e 12 CLR22A 2B 2C 2D 13
2 2<0O—
Xtal CLR1
il 741.S393
P>1 1A 1B 1C 1D

3] 4 5 6

Figure 8: Clock and Ripple Counter

inductance associated with the switch might degrade the rise and fall times or, worse yet,
allow the pulse to “leak through” even though the switch was open.

A clock in a digital system is a signal which produces a (usually continuous) series of
pulses spaced at regular intervals. We often use crystal oscillators as sources for clock wave-
forms. The period of the clock waveform is the cycle time or the length of time from the
beginning of one pulse to the next occurrence of that pulse. The duty cycle of a clock wave-
form is the percentage of time that it is active.

Ripple Counter

Wire up a crystal oscillator output to an 8-bit ripple counter as shown in Figure 8 and
verify its operation. Do not forget to wire power and ground! Please take care to put the
crystal oscillator in RIGHT SIDE UP! They are destroyed when powered while upside down.

Save this circuit for later use in this Lab.

Measure the delay from the falling edge of the crystal clock to a change in the most
significant bit (MSB) of the 8-bit counter.

HINT: Use the MSB of the 8-bit counter as your scope sync.

What is the average operation time for a flip flop in the ripple counter?
HP Logic Analyzer/Digital Oscilloscope

Logic analyzers and digital oscilloscopes are complex instruments. They are also ex-
tremely powerful in aiding one to debug complex digital systems. You will find that time
spent now in learning to use a logic analyzer will benefit you greatly and save you much time

and effort in debugging later Labs and your final project.

Read the handout, “A Brief Introduction to the HP Logic Analyzer”. Then come into

6.111 — Laboratory 1 8

the lab and experiment with the logic analyzer. Additional documentation can be found in
the pocket on the top of each logic analyzer, and several copies of the reference manual are
placed in the lab.

Check out an HP Training Kit from the instrument room and go through all of those
exercises to learn about the logic analyzer and oscilloscope.

DO NOT remove the HP documentation from the lab.
Exercise IV: Timing Analyzer Operation

Set up Analyzer 1 as a timing analyzer with a name of “Lab_1T”. Assign Pod 1 to an-
alyzer 1. Set analyzer 2 to Off.

Go to the FORMAT menu and enter labels for CLK, Q1B, Q2D, RING, and /GLIT and
assign these to bits 0 through 4 respectively. The TTL threshold should be selected. Positive
polarity, +, should be selected. Set the Acquisition mode to Transitional.

Go to the Trigger menu. Change the Base to Binary for all signals. Set the trigger
(TRIGGER on ‘‘Edgel’’ 1 time) to specify a falling edge trigger on Q2D which is bit 2.

Wire up the CLK, Q1B, and Q2D signals from your kit. Refer to Figure 8. Press the
RUN button and manipulate the X and 0 markers to read the delay time from the falling edge
of CLK to the falling edge of Q2D. To get at the X and 0 markers, you have to set Markers
to Time. Press RUN several times to repeat the measurement. You can automate repeated
runs by selecting the Run button (by holding down the mouse button or by using the arrow
keys) and choosing Repetitive from the menu.

Change the Trigger mode back to Single and explore changing the Time/Div, Delay,
and the X and 0 markers.

Now wire the RING bit to an output of your ring oscillator and measure the period.
Change the logic analyzer to trigger on either edge of the RING bit.

Modify the wiring of your 741.S00 so as to conform to the circuit shown in Figure 9. Wire
the /GLIT bit to the (purposely) glitchy output on pin 8 of the 74LS00.

Measure the width of the glitch.

Now change the Acquisition mode (select the Format menu) to Glitch and trigger the
logic analyzer on any glitch of /GLIT. Make sure you can see a few full periods of Q2D.

Press RUN several times and sketch one of the more interesting traces of /GLIT.

6.111 — Laboratory 1 9

+5
1 4 12
00 s> _Ors 00 ot
Q2D ~ ’2 5 2 13
10
00 Yoo
9 IGLIT

Figure 9: Glitch Measurement

Exercise V: Counter

One of the most useful of the TTL MSI ICs is a 4-bit counter such as the 74LS161/3.
These two ICs are identical except that the clear input on the 161 is asynchronous (i.e.,
takes effect immediately when asserted) while on the 163 the counter only changes state as
a result of the rising edge of the clock.

Wire two 741.S163s so that they always count, connecting an output of your ripple counter
to its clock input. Trigger your scope on the most significant bit (MSB) and verify its
operation. Save this circuit as you will need it for the rest of this Lab.

e About how long does it take, after the rising edge of the clock, for one of the flip
flops to change state? This may be easier to measure if you use a fast clock or trigger
the scope on the LSB of the counter. This delay is short and thus hard to measure.

e (Can you observe any glitches on the carry output? Look at both carry outputs. Look
carefully around the 0111 to 1000 transition. Glitches like these are hard to see as they
are very short. The carry output does not always have glitches, just sometimes for
some particular chips!

You may or may not be able to detect a glitch on the carry output with a logic analyzer
configured as a timing analyzer and triggered in glitch mode. The logic analyzer will
catch glitches that are 5 ns or greater and may or may not catch shorter glitches.

Exercise VI: Programming a 20v8
Brief Description of a 20V8:

The 20V8 is electrically erasible. Mistakes are easy to correct by simply reprogramming
the device with a corrected jedec file. The logic in the chip is programmable so that an

6.111 — Laboratory 1

Figure 10: Output Architecture Configuration of 20V8

10

6.111 — Laboratory 1 11

output can be combinational or from a D flip-flop. In either case, an output can be inverted
or not. An output pin could be used as an input or the output could be tri-state. If any
output is configured as a flip-flop, then pin 1 is the clock and pin 13 is the output enable.
For this lab, some outputs will be a flip-flop, and all possible outputs (eight of them) will be
used. Also, none of the outputs will be tri-stated. You will (should) ground pin 13 to always
assert the output enable for the flip-flop outputs. Two appropriate configurations are shown
in Figure 10.

The programming information for the configuration fuses (as well as for the logic terms)
is contained in the jedec file. Each line in Figure 10 labeled ‘ ‘FROM AND ARRAY’’ represents
a product term which can contain any input or output signal except pins 1 and 13 when any
output is a flip-flop.

Creating your source file:

Actually, we have created the source file for you, so all you have to do is copy it to where
you can compile it. You should do this on one of the lab computers or on a Project Athena
Sun workstation. If you are using an Athena Sun workstation, remember to execute ‘ ‘setup
6.111°’. Don’t use “add 6.1117. Make a copy of the initial specification file by executing
the commands:

cd

mkdir labil

cd labl

cp /mit/6.111/vhdl/labl/labl.vhd 1labl.vhd
chmod 600 labl.vhd

Creating your jedec file:

Run galaxy to create your jedec file. You may wish to look at the handout, A Beginner’s
Guide to WARP. Set the device to be C20V8 and the package to be PALCE20V8-7PC.
You may want to look at the report file generated when you created your jedec file.
Programming the PAL:

The 20v8 PALs are CMOS. Please ground yourself before touching them as you may oth-
erwise burn them out with a high voltage resulting from static charge. Use the conductive

foam which has been provided for storing and transporting PALs.

Program your PAL on one of the universal programmers. See the “PAL Programming”
handout in this packet.

6.111 — Laboratory 1 12

Exercise VII: Analyze and Test the Latch

Draw a logic diagram using AND gates and NOR, gates for the latch realized by
the last two concurrent statements in the VHDL source file on page 15. You may use
inverters as required.

Implement an SSI version of a latch with 74L.S00 NAND gates.

Wire debounced switches to the input pins corresponding to S, R, LATCHCLK, and
DATA for both the PAL and SSI versions. Wire LEDs to the outputs QH and QL.

With LATCHCLK = low, test that both latches work as expected when you operate
the switches connected to the S and R inputs.

With S = R = low, test that the latch works as expected when you pulse the
LATCHCLK input for the two possible values of DATA.

e What happens if you wire DATA to the complement of pin 22 (qh) and pulse the
LATCHCLK input?

Dynamic Testing of Combinational Logic

Wire five counter outputs to pins 2 through 6 of your PAL as shown in Figure 11. Set up
the scope so that it syncs on the falling edge of the MSB of the counter. Adjust the time base
and position the trace so that one complete period of the MSB occupies 8 scale divisions.
This makes it reasonably convenient to use a single scope probe to display a combinational
logic waveform for all 32 possible input combinations. Demonstrate your scope waveforms
to a T.A.

Exercise VIII: Analyze and Test Your Combinational Logic

e Provide sketches of the outputs X2, X1, and X0.
e Are there any static hazards in your realizations?
e Can you observe any glitches? Why or why not?

e What is the delay through your combinational logic?

6.111 — Laboratory 1

/CLK

13

Figure 11: Counter To PAL Wiring

+5 +5
3 4] 5| ¢ 3| 4 5| ¢
7 7
olP A B C D 15 olP A B C D
51T RCO 51 T RCO
— 9 LD 7415163 — 9 LD 7415163
=g CLR =g CLR
2> Qa Qb Qc Qd 2> Qa Qb Qc Qd
14 13 12 11 14 13 19 11
2| 3] 4| 5| 6
LS 0 a2 a3

15

6.111 — Laboratory 1 14

Exercise IX: Analyze and Test the T, D, and JK Flip Flops

e Implement these three FFs with 74LS74 and 74LS00 as required.

e What is the delay or operating time of a PAL flip flop? That is, what is the time from
the rising edge of /FFCLK to a change in state of the flip flop? Measure this for a
TALS74.

e What do you think the setup and hold times are for both the PAL and SSI versions of
the T flip-flop?

Exercise X: Logic Analyzer as a State Analyzer

Configure Analyzer 1 as a State analyzer and assign Pod 1 to it. Wire bits 0 through
3 to the label, ADDR. Wire bits 4, 5 and 6 to the label X and bits 7, 8, and 9 to the labels
JK, T, and D respectively.

Wire the CLK signal (pin 1 of your PAL) to the CLK channel and enable the J Clock
for a rising edge.

Go to the TRIGGER menu and set the trigger so that the analyzer will trigger on the
second occurrence of the 4-bit address = 0. You should then be able to display a truth table
of X2, X1, and X0 as a function of the address.

Change Analyzer 1 to a Timing analyzer and display timing waveforms similar to those
previously displayed on your oscilloscope trace. Also use the logic analyzer to verify the

operation of the JK, T, and D flip flops.

Demo your proficiency with the logic analyzer to a T.A. who will initial and date your
PAL listing (which you should include in your report).

The following is a listing of the vhdl input file:

6.111 — Laboratory 1 15

—-- This comment is before the library and use clauses.
library ieee;
use ieee.std_logic_1164.all;
-— here is the entity
entity labl is
port (ffclk, a0, al, a2, a3, a4, latchclk, data, s, r : in std_logic;
x0, x1, x2 : out std_logic;
dff, tff, jkff, ql, gh: buffer std_logic);
attribute pin_numbers of labl:entity is
-- This attribute is implemented by Cypress (and not by Altera).
" ffclk:1 a0:2 al:3 a2:4 a3:5 a4:6 latchclk:7 data:8 s:9 r:10" &
" x0:15 x1:16 x2:17 " &
" dff:18 tff:19 jkff:20 ql:21 gh:22 ";
-— don’t forget to ground pin 13
—-— having these two attributes makes the equations easier to understand
-- it also ensures symmetry
attribute synthesis_off of gh:signal is true;
attribute synthesis_off of ql:signal is true;
end labil;
-— here is the architecture
architecture behavioral of labl is
begin
-- x2, x1, x0 is (supposed to be) the integer part of
—-- the square root of a4, a3, a2, al, a0
—-— concurent statements implementing x2, x1, and x0
x2 <= a4;
x1 <= (not a4) and (a3 or a2);
-— x0 <= not (((not a4) or a3) (a3 or (not a2)) and (a3 or al or al);
x0 <= (a3 and al) or (a3 and a0) or (a3 and a2) or
((not a4) and (not a2) and al0) or ((not a4) and (not a2) and al);
-- a process implementing the three flip-flops
process (ffclk) begin
if rising_edge(ffclk) then
dff <= a0;
tff <= al xor tff;
jkff <= (a2 and (not jkff)) or ((not a3) and jkff);
-- note that extra parentheses are ok
end if;
end process;
—-— concurent statements implementing gh and ql
gl <= r or (not gh) or (latchclk and (not data));
gh <= s or (not ql) or (latchclk and data);
end behavioral;

6.111 — Laboratory 1

— This is an intentional blank page —

16

