Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science

6.111 - Introductory Digital Systems Laboratory

Quiz 2 November 1, 2002
1 (20)
2 (20)
3 (20) NAME
4 (40)
TOTAL (100)

Indicate Your Section

() James 12 PM
() Jennifer 1PM
() Neira 3 PM

This quiz is Closed Book: Two handwritten “crib” sheets are allowed.

Put your name on all sheets and indicate your section on this page.

Write all your answers directly on the quiz.

Show all of your work.

You are not required to use a logic template, but you must make sure your answers are
legible.

6.111 Quiz 2 Solution2

Introduction

Problems 2, 3 and 4 of this quiz are based on three vhdl programs which are attached to
the back of the quiz. You may remove those pages from the quiz for ease in referring to them.
They need not be turned in with the quiz. Note that there are two copies of 1lock.vhd. The
first of these must be turned in as you will be modifying it.
Problem 1: Finger Exercises

Show, on Figure 1 how a shift-and-add multiplication of —3 x 5 would be carried out.
In particular, you should show what the contents of the accumulator register would be after
each step in the shift-and-add process. Assume that the multiplicand is in a left-shift regis-
ter. Start with five bit wide representations of -3 and 5. Your answer should be a five bit,
two’s complement number. There are two copies of the answer table, in case you make a
mistake and need to start over. If you write on both of them, be sure to indicate which one
has your answer as we will grade only one.

Note we are treating this as two five-bit numbers, which indicates a nine bit answer. Sign
extension is required for the negative, two’s complement number

-3 [[[1]1]1[1]1]1]1]0[1
x5 [[[0/0][0]0]0]0[1[0[1]
= [[[1[1]1]1]1]1]1[0[1]
+ [[[o][o]o]o[o[o[o[0] |
= [[[1[1]1]1]1]1]1[0[1]
+ [[[1[1]1]1]1]0[1] [|
= [[[1][1]1]1]1]0[0[O[1]
+ [[[o]o]ofo[ojo] [[|
= [[[1][1]1]1]1]0[0[O[1]
+ [[[ofofofojo] [[[|
= || [1[1][1]1]1]0]0[0]1]
Complement: 0000011 10

N 1
000001111=15

Figure 1: Shift-and-add table for Problem 1

6.111 Quiz 2 Solution3

Problem 2: Timing

Refer to the program easy.vhd, the first of three. This takes a clock and two input
signals a and b. It produces three output signals: x, y and z. A rudimentary timing diagram
is shown in Figure 2, in which the input signals and clock are shown. Show the output
signals. Remember: you don’t know anything about the input signals before the start of the
timing diagram. As with Problem 1, there are two copies of the blank timing diagram, in
case you make a mistake. If you write on both of them, be sure to indicate which one has
your answer as we will grade only one.

Note the output signals are and’s of a combinatoric and registered signals. It is important
to note when you don’t know the output signal and when signals change

O N < X T 9

Figure 2: Timing Diagram for Problem 2: copy 1

6.111 Quiz 2 Solution4

Problem 3: Unknown Machine
The second program attached to the back, odd.vhd, does something which you should
be able to figure out.

1. What does this thing do? State its functioning in words.
This thing has four loadable registers, loaded by a selector with a control word wdsel
(and a write enable). At the same time it has an output which is selected in the same
fashion, according to another control word rdsel

2. Draw a block diagram that describes the structure of what this thing does. Show the
important elements as MUXes, Registers, Tri-States, etc.

wdata \

8
we —— rdlout

- 2

Figure 3: Functionality of the odd code

6.111 Quiz 2 Solution5

Problem 4: Problematic Lock

The third program describes a (probably faulty) digital lock. The design was inspired by
a desire to discourage lock pickers. In a good example of perhaps faulty logic it was decided
that, if the wrong combination was entered the lock should first warn the operator (beep)
and then, if correction is not made immediately, it should blow up, thus making the would
be lock picker very, very sorry. The lock is intended to be connected to an input consisting
of an eight-bit number and an ’enter’ key. A combination is hard-coded into the thing, but
could obviously be changed just before compile time. To unlock, one enters the first number
and ’enter’, the second number and ’enter’, the third number and ’enter’ and the device
should unlock. It has a provision that if a wrong number is entered it goes to an alarm state
and causes an alarm to beep. At this point it must be re-set by entering all zeros. If this

is not done, the next state causes a massive explosion (which is a good reason to be careful
with this lock).

1. What is the combination?
1-5. The third number is a red herring: it is not used

2. In the handy-dandy form shown in Figure 5, draw the state transition diagram for this
machine, showing all inputs and outputs.

3. A number of engineers have worked with this, but none have been able to give us a de-

scription of what happens. All we know is that each of their experiments have resulted
in explosions. We suspect it may be related to the relatively high clock frequency,
relative to the ability of the engineers to push buttons. What is happening?
The late engineers probably pushed the button for several clock cycles, which is too
many: after getting one input number right, the second and third will not be, causing
the machine to cycle directly to the massive explosion. What is needed is to produce a
‘one clock cycle’ signal from each button push. An equivalent circuit would be as shown
in Figure 4

:)— enter

pb

[clk |_> ,_>

Figure 4: Equivalent Circuit for Lock Code

spb

ol O

Ol O

Irpb

4. You can fix the premature explosion problem by modifying the code. Write the new
code here and indicate where it goes in the VHDL program.

6.111 Quiz 2 Solution6

5. Once the explosion issue is settled, it is noted that on occasion the thing unlocks even

when a wrong number is entered. This is due to a ’glitch’ arising from the crude way
in which this thing was written. What is wrong?
There could be two right answers for this: the first one is that the ’unlok’ output is
set when n_s is success, and that could happen if one is in state) and the switches are
in the process of being switched. The other is that a transition from state 000 to 011
(alarm) could transition through 010 (success), producing a transient glitch

6. Propose a ’fix’ for this problem. Include any additional code that might be required
and/or code that should be removed.
the solution is to register the unlok signal and set it only on a clock edge or while
actually in the success state

lenter

enter*(innum=second)/unlok

statel

enter* (innum=first

enter*(innum = zeros)

boom
Kaboom

Figure 5: State Transition Diagram for Problem 3

lenter

Success

enter*(innum = second)

lenter

enter*
(innumq: first)
/beep

lenter

enter*(innum = zeros)

6.111 Quiz 2 Solution7

This is lock.vhd Keep this with your quiz and turn it in: please use it to indicate where
code modifications must be placed. The required code changes are included here

library ieee;

use ieee.std_logic_1164.all;
use work.std_arith.all;
entity diglock is port

(
innum : in std_logic_vector(7 downto 0);
pb, clk : in std_logic; -- enter will be synched pb
beep, unlok : out std_logic;
Kaboom : out std_logic := ’0°);

end diglock;

architecture state_machine of diglock is
type StateType is (stateO, statel, success, alarm, boom);

signal p_s, n_s : StateType;

signal spb, rpb : std_logic;

signal enter : std_logic;

constant first : std_logic_vector(7 downto 0) :="00000001";
constant second : std_logic_vector(7 downto 0) :="00000101";
constant third : std_logic_vector(7 downto 0) :="00001010";
constant zeros : std_logic_vector(7 downto 0) := (others => ’0’);

begin
-- commented out code here is to be done better below
—-— unlok <= ’1’ when n_s = success else ’0’;
-- beep <= ’1’ when n_s = alarm else ’0’;

enter = spb and (not rpb); —- one clock pulse wide
fsm: process (p_s, innum)
begin

case p_s is
when state0 =>
unlok <= ’0’;
beep <= ’0’;
if innum = first then
n_s <= statel;
else
n_s <= alarm;
end if;
when statel =>
unlok <= ’07;
beep <= ’0’;
if innum = second then
n_s <= success;
else

6.111

when

when

Quiz 2

n_s <= alarm;
end if;
success =>
unlok <= ’1’;

beep <= ’0’;
n_s <= statel;
alarm =>
unlok <= ’0’;
beep <= ’17;
if innum = zeros then
n_s <= state0;
else
n_s <= boom;
end if;

when boom =>

Kaboom <= ’1’;

Solution8

—- don’t care about next state!

when others => n_s <= statel; -- avoid trap states

end case;

end process fsm;
syncpb: process(clk, pb)
if rising_edge(clk)

spb <= pb;
rpb <= spb;
end if;

end process Syncpb;

state_clocked

: process (clk)

begin
if rising_edge(clk) then
if enter = ’1’ then
p_s <= n_s;
end if;
end if;

end process state_clocked;
end architecture state_machine;

6.111 Quiz 2

This is easy.vhd

library ieee;
use ieee.std_logic_1164.all;
entity reg is

port (
a, b, clk : in std_logic;
y, Z : out std_logic;
X : buffer std_logic);
end reg;

architecture top of reg is
signal ¢ : std_logic;
begin -- top
y <= x and b;
z <= ¢ and b;
reg2: process (clk)
begin -- process
if rising_edge(clk) then
c <= 3a;
if b=’1’ then
X <= a;
end if;
end if;
end process;
end top;

Solution9

6.111 Quiz 2 Solution10

This is odd.vhd

library ieee;

use ieee.std_logic_1164.all;
use work.std_arith.all;
entity unknown is

port (
clk, we : in std_logic;
rdlsel, wdlsel : in std_logic_vector(l downto 0);
wdata : in std_logic_vector(7 downto 0);
rdlout : out std_logic_vector(7 downto 0));

end unknown;

architecture whatisthis of unknown is
signal zero, one, two, three : std_logic_vector(7 downto 0);

begin -- whatisthis
clk_process: process (clk, one, two, zero, three, we, rdlsel, wdlsel, wdata)
begin -- process

if rising_edge(clk) then
if we = ’1’ then
if wdlsel = "00" then
zero <= wdata;
elsif wdlsel = "01" then
one <= wdata;
elsif wdlsel = "10" then
two <= wdata;
else
three <= wdata;
end if;
end if;
end if;
case rdlsel is
when "00"=> rdlout <= zero;
when "01" => rdlout <= one;
when "10" => rdlout <= two;
when "11" => rdlout <= three;
when others => rdlout <= "00000000";
end case;
end process clk_process;
end whatisthis;

6.111 Quiz 2 Solutionl1

This is lock.vhd This is the original, problematic version.

library ieee;

use ieee.std_logic_1164.all;
use work.std_arith.all;
entity diglock is port

(
innum : in std_logic_vector(7 downto 0);
enter, clk : in std_logic;
beep, unlok : out std_logic;
Kaboom : out std_logic := ’0’);

end diglock;

architecture state_machine of diglock is
type StateType is (stateO, statel, success, alarm, boom);

signal p_s, n_s : StateType;

constant first : std_logic_vector(7 downto 0) :="00000001";
constant second : std_logic_vector(7 downto 0) :="00000101";
constant third : std_logic_vector(7 downto 0) :="00001010";
constant zeros : std_logic_vector(7 downto 0) := (others => ’07’);

begin
unlok <= ’1’ when n_s = success else ’0’;
beep <= ’1’ when n_s = alarm else ’0’;

fsm: process (p_s, innum)
begin
case p_s is
when state0 =>
if innum = first then
n_s <= statel;
else
n_s <= alarm;
end if;
when statel =>
if innum = second then
n_s <= success;
else
n_s <= alarm;
end if;
when success =>
n_s <= stateOl;
when alarm =>
if innum = zeros then
n_s <= state0;
else

6.111 Quiz 2 Solution12

n_s <= boom;

end if;
when boom =>
Kaboom <= ’17; -- don’t care about next state!
when others => n_s <= state0; -- avoid trap states

end case;
end process fsm;
state_clocked : process (clk)

begin
if rising_edge(clk) then
if enter = ’1’ then
p_-s <= n_s;
end if;
end if;

end process state_clocked;
end architecture state_machine;

