VOLTAGE-CONTROLLED CURRENT SOURCE [VCCS]

- 1. Feedback forces [+15V V $_{IN}$] across R_{E} , because V_{+} must equal V_{-}
- 2. If we ignore any offset voltage at the output of the op-amp, the only error comes from the emitter current not quite being equal to the collector current [due to I_B]. One can use a Darlington transistor or a JFET to reduce or remove this error.
- 3. This version of the VCCS does not work if V_{IN} is an external voltage not referenced to V_{CC} .
- 4. Example: $R_E = 100\Omega$, $\beta_F = 100$, $V_{IN} = 5$ V, 10 V, and 14 V:

 $[15V-5V] / 100\Omega = 100 \text{ mA for } I_E; I_C = 99 \text{ mA}.$

 $[15V-10V] / 100\Omega = 50 \text{ mA for } I_E; I_C = 49.5 \text{ mA}.$

 $[15V-14V] / 100\Omega = 10 \text{ mA for } I_E; I_C = 9.9 \text{ mA}.$

5. $R_1 - R_2$ can of course be a potentiometer for ease of adjustment!

Page 1 of 1

3/12/07