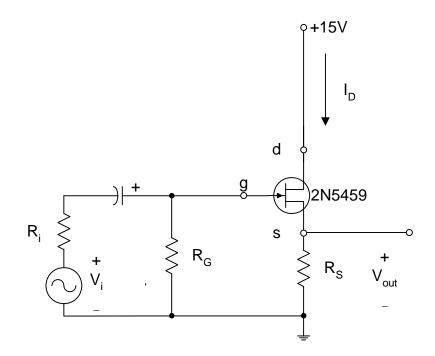
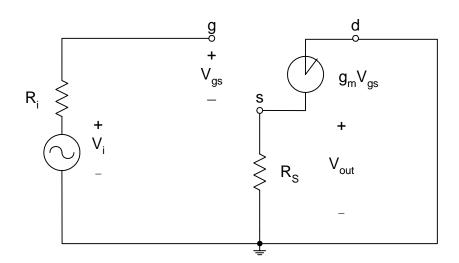

JFET AMPLIFIER CONFIGURATIONS

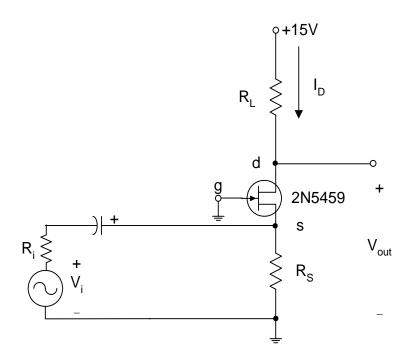
JFET AMPLIFIER CONFIGURATIONS WITH HYBRID-IT EQUIVALENT CIRCUITS COMMON SOURCE AMPLIFIER WITH BYPASSED SOURCE RESISTOR

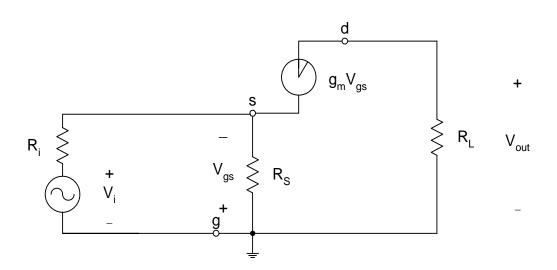




$$A_{v} = \frac{v_{out}}{v_{in}} = \frac{-g_{m}v_{gs}R_{L}}{v_{gs} + g_{m}v_{gs}R_{S}} = \frac{-g_{m}v_{gs}R_{L}}{v_{gs}[1 + g_{m}R_{S}]}$$

$$A_{v} = \frac{-g_{m}R_{L}}{1 + g_{m}R_{S}} \qquad or \qquad A_{v} = -g_{m}R_{L}$$


JFET AMPLIFIER CONFIGURATIONS WITH HYBRID- Π EQUIVALENT CIRCUITS COMMON DRAIN [SOURCE FOLLOWER] AMPLIFIER



$$A_{v} = \frac{v_{out}}{v_{in}} = \frac{g_{m}v_{gs}R_{S}}{v_{gs} + g_{m}v_{gs}R_{S}} = \frac{g_{m}v_{gs}R_{S}}{v_{gs}[1 + g_{m}R_{S}]}; \qquad A_{v} = \frac{g_{m}R_{S}}{1 + g_{m}R_{S}}$$

JFET AMPLIFIER CONFIGURATIONS WITH HYBRID-IT EQUIVALENT CIRCUITS COMMON GATE AMPLIFIER

$$A_{v} = \frac{v_{out}}{v_{in}} = \frac{-g_{m}v_{gs}R_{L}}{-v_{gs}\left[g_{m}R_{i} + \frac{R_{i}}{R_{S}} + 1\right]} = \frac{g_{m}R_{L}}{1 + g_{m}R_{i} + \frac{R_{i}}{R_{S}}}; \quad if \ R_{i} = 0,$$

then
$$A_v = g_m R_L$$

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASSACHUSETTS 02139

Low Frequency Hybrid- π Equation Chart

TRANSISTORS

Characteristic	Common Emitter	CE with R _E	CC [E. Follower]	Common Base
Voltage Gain [if r _o >>R _L]	$A_{v} = -g_{m}R_{L}$	$A_{_{\scriptscriptstyle V}} pprox -rac{R_{_L}}{R_{_E}}$	$A_{_{\scriptscriptstyle V}} \approx 1$	$A_{v} = \frac{\beta_{o} R_{L}}{r_{\pi} // R_{E} + (\beta_{o} + 1) R_{s}}$
Current Gain	βο	βο	β _o +1	$\frac{\beta_o}{\beta_o + 1}$
Input Impedance	r_{π} // R_{B}	$\left[r_{\pi} + (\beta_o + 1)R_E\right] // R_B$	$\left[\left[r_{\pi} + \left(\beta_{o} + 1 \right) R_{E} \right] // R_{B} \right]$	$\frac{r_{\pi}}{\beta_o + 1}$
Output Impedance	R_L	R_L	$\left[\left[\frac{\left(r_{\pi} + R_{s} // R_{B} \right)}{\beta_{o} + 1} \right] // R_{E} \right]$	R_L
	[if $r_o \gg R_L$]	[if $r_o \gg R_L$]	$\begin{bmatrix} \beta_o + 1 \end{bmatrix}$	[if $r_o \gg R_L$]
Phase Reversal?	Yes	Yes	No	No

JFET'S

Characteristic	Common Source	C Source with R _s	Common Drain [Source Follower]	Common Gate
Voltage Gain	$A_{v} = -g_{m}R_{L}$	$A_{v} = \frac{-g_{m}R_{L}}{1 + g_{m}R_{S}}$	$A_{v} = \frac{g_{m}R_{s}}{1 + g_{m}R_{s}}$	$A_{v} = \frac{g_{m}R_{L}}{2}$
[if $r_{ds} \gg R_L$]		v $1+g_{m}R_{S}$	$1+g_mR_S$	$A_{v} = \frac{g_{m}R_{L}}{1 + g_{m}R_{i} + \frac{R_{i}}{R_{S}}}$
				R _i = generator resistance
Current Gain	I_D	I_D	I_D	$g_m R_S$
	$\overline{I_S}$	$\overline{I_{\scriptscriptstyle S}}$	$\frac{I_D}{I_S}$	$A_i = \frac{g_m R_S}{g_m R_S + 1}$
	Very large!	Very large!	Very large!	
Input Impedance	R_{G}	R_G	R _G	$\frac{R_S}{g_m R_S + 1} = \frac{1}{g_m} // R_S$
Output	R_L	R_L	R_s 1 R_s	R_L
Impedance	[if $r_{ds} \gg R_L$]	[if $r_{ds} \gg R_L$]	$\frac{R_S}{g_m R_S + 1} = \frac{1}{g_m} // R_S$	[if $r_{ds} \gg R_L$]
Phase Reversal?	Yes	Yes	No	No

6 9/27/06

FET COMMON-SOURCE AMPLIFIER BIASING-GRAPHICAL METHOD #1

- 1. FIND $V_{GS(OFF)}$ & I_{DSS} FOR YOUR DEVICE; MEASURE USING CURVE TRACER. [$V_{GS(OFF)}$ = GATE-SOURCE VOLTAGE FOR WHICH I_D = 0. I_{DSS} = I_D WHEN V_{GS} = 0]
- 2. ASSUME R_S << R_L.
- 3. PLOT A LOAD LINE ON THE OUTPUT CHARACTERISTICS. KEEP THE I_D , V_{DS} = 0 INTERCEPT ON THE GRAPH PAGE; I. E. STAY AWAY FROM NEARLY VERTICAL LOAD LINES.
- 4. CALCULATE R_L FROM THE LOAD LINE INTERCEPTS. USE CLOSEST STD. VALUE.
- 5. PICK Q-POINT VALUE OF V_{GS} FOR MAXIMUM LINEAR OUTPUT SWING.
- 6. CALCULATE I_D: $I_D = I_{DSS} \left(1 \frac{V_{GS}}{V_{GS(off)}} \right)^2$; OR ESTIMATE FROM CHARACTERISTICS.
- 7. CALCULATE Rs FOR Vgs AT Id . $\left(R_{\rm S} = \frac{V_{\rm GS}}{I_{\rm D}}\right)$. USE CLOSEST STANDARD VALUE.
- 8. COMPARE R_S AND R_L ; IF R_S IS CLOSE TO R_L , REPLOT THE LOAD LINE.
- 9. RECALCULATE R_S FOR NEW V_{GS}. REPEAT STEPS 7 AND 8 AS NECESSARY!

CALCULATING JFET SMALL-SIGNAL g_m

- 1. CALCULATE g_m FROM ΔI_D / ΔV_{GS} ON DRAIN CHARACTERISTICS FROM CURVE TRACER [LARGE SIGNAL g_m]
 - 2. OR USE MEDIAN SPECIFICATION SHEET VALUE. [FOR A FAST ESTIMATE.]

$$\text{OR} \qquad g_{_{m}} = \frac{-2I_{_{DSS}}}{V_{_{GS(off)}}} \left(1 - \frac{V_{_{GS}}}{V_{_{GS(off)}}}\right) = \frac{-2I_{_{DSS}}}{V_{_{GS(off)}}} \sqrt{\frac{I_{_{DS}}}{I_{_{DSS}}}} \qquad \text{WHERE V_{GS} or I_{D} = OPERATING POINT.}$$

When $V_{GS} = V_{GS(OFF)}, \ I_D = 0 \ ; \ I_{DSS} = I_D \ @ \ V_{GS} = 0. \ NOTE THAT THE SMALL-SIGNAL$

TRANSCONDUCTANCE DEPENDS ON THE DC BIAS POINT, JUST AS IT DOES FOR THE BIPOLAR TRANSISTOR!

FET COMMON-SOURCE AMPLIFIER BIASING-GRAPHICAL METHOD #2

- 1. FIND $V_{GS(OFF)}$ & I_{DSS} FOR YOUR DEVICE; MEASURE USING CURVE TRACER. $[V_{GS(OFF)} = GATE\text{-}SOURCE VOLTAGE FOR WHICH } I_D = 0. I_{DSS} = I_D WHEN V_{GS} = 0]$
- 2. REFER TO THE COMBINED TRANSFER [TRANSCONDUCTANCE] CHARACTERISTICS AND DRAIN CHARACTERISTICS CURVES [ATTACHED].
- 3. Choose Rs as follows: $R_{_S} = \left| \frac{V_{_{GS(OFF)}}}{I_{_{DSS}}} \right|. \text{ DRAW THE LINE REPRESENTING Rs}$

FROM THE ORIGIN OF THE TRANSFER CURVE GRAPH; THE "Q" POINT IS AT THE INTERSECTION OF THE TWO PLOTS. THIS SETS I_{DQ} AT ABOUT 0.4 I_{DSS} .

- 4. EXTEND A HORIZONTAL LINE FROM THE I_{DQ} VALUE ON THE TRANSFER CHARACTERISTICS' LEFT-HAND AXIS ALL THE WAY ACROSS THROUGH THE DRAIN CHARACTERISTICS.
- 5. THE RIGHT-HAND VOLTAGE INTERCEPT FOR THE LOAD LINE [ON THE DRAIN CHARACTERISTICS] IS EQUAL TO THE SUPPLY VOLTAGE V_{DD} . CHOOSE A VALUE FOR V_{DSQ} THAT GIVES A ROUGHLY SYMMETRICAL OUTPUT VOLTAGE SWING AROUND V_{DSQ} .
- 6. DRAW A VERTICAL LINE FROM V_{DSQ} UPWARDS TO INTERSECT WITH THE LINE DRAWN IN STEP #4. THIS INTERSECTION GIVES THE Q-POINT.
- 7. DRAW THE LOAD LINE FROM THE SUPPLY VOLTAGE THRU THE Q-POINT UNTIL IT INTERSECTS WITH THE CURRENT AXIS.
- 8. DIVIDE THE SUPPLY VOLTAGE BY THE CURRENT AXIS VALUE TO GET THE TOTAL VALUE OF RESISTANCE IN THE DRAIN-SOURCE CIRCUIT.
- 9. SUBTRACT THE VALUE OF $R_{\rm S}$ FOUND IN STEP #3 FROM THE VALUE FOUND IN STEP #8 TO GET THE VALUE OF LOAD [OR DRAIN] RESISTOR. USE CLOSEST STANDARD VALUE FOR BOTH RESISTORS.
- 10. NOTE THAT THE MORE VERTICAL THE LOAD LINE, THE SMALLER THE VALUE OF R_L . LOW R_L EQUALS LOW VOLTAGE GAIN [$A_V = -g_m R_L$]. ACCEPTING A LOWER VOLTAGE V_{DQ} WITH ITS ATTENDANT ASYMMETRICAL VOLTAGE SWING WILL ALLOW A HIGHER VALUE R_L . INCREASING SUPPLY VOLTAGE WILL ALSO ALLOW A LARGER VALUE OF R_L AND A MORE SYMMETRICAL VOLTAGE SWING. [THE MORE HORIZONTAL THE LOAD LINE, THE HIGHER THE TOTAL DRAIN-SOURCE RESISTANCE.]

8 9/27/06

FET SOURCE-FOLLOWER LOAD LINE/GAIN EXAMPLES & METHOD

- 1. FIND $V_{GS(OFF)}$ & I_{DSS} FOR YOUR DEVICE; MEASURE USING CURVE TRACER. [$V_{GS(OFF)}$ = GATE-SOURCE VOLTAGE FOR WHICH I_D = 0. I_{DSS} = I_D WHEN V_{GS} = 0]
- 2. CHOOSE Q-POINT; i.e. CHOOSE -VGS FROM DRAIN CHARACTERISTICS GRAPH.
- 3. CALCULATE ID: $I_{D} = I_{DSS} \left(1 \frac{V_{GS}}{V_{GS(off)}} \right)^{2}$; OR ESTIMATE FROM CHARACTERISTICS.
- 4. CALCULATE Rs; USE CLOSEST STANDARD VALUE.
- 5. CALCULATE LOAD LINE INTERCEPTS, [MAY HAVE TO USE Δ BECAUSE THE I_D-V_{DS} = 0 INTERCEPT MAY BE WAY OFF THE GRAPH PAGE].

$$\text{6. CALCULATE g}_{\text{m:}} \qquad \qquad g_{\text{m}} = \frac{-2I_{\text{DSS}}}{V_{\text{GS(off)}}} \left(1 - \frac{V_{\text{GS}}}{V_{\text{GS(off)}}}\right) = \frac{-2I_{\text{DSS}}}{V_{\text{GS(off)}}} \sqrt{\frac{I_{\text{DSS}}}{I_{\text{DSS}}}}$$

7. CALCULATE A_v:
$$A_v = \frac{g_m R_S}{1 + g_m R_S}$$

8.
$$R_o = \frac{1}{g_m} // R_S$$

9. EXAMPLES
$$[V_P = V_{GS(OFF)} = -5.8V; I_{DSS} = 9mA]$$

	Example 1	Example 2	Example 3
1. V _{GS} , I _D	-4V, 1.2mA	-3V, 2.3mA	-2V, 4.2mA
2. R _S =	3.3 kΩ	1.2 kΩ	470 Ω
3. Δ I _D @ Δ V _{DS}	4.55mA	12.5V, 5.32mA	10V, 4.17mA
4. g _m =	963 μΜΗΟ	1,500 μΜΗΟ	2,030 μΜΗΟ

5. A _v =	.761	.643	.488
6. R _o =	790Ω	428Ω	240Ω

10 9/27/06