DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASSACHUSETTS 02139

Low Frequency Hybrid- π Equation Chart

TRANSISTORS

Characteristic	Common Emitter	CE with R _E	CC [E. Follower]	Common Base
Voltage Gain [if r₀ >>RL]	$A_{v} = -g_{m}R_{L}$	$A_{_{\scriptscriptstyle V}} pprox -rac{R_{_L}}{R_{_E}}$	$A_{_{\scriptscriptstyle V}} \approx 1$	$A_{v} = \frac{\beta_{o} R_{L}}{r_{\pi} // R_{E} + (\beta_{o} + 1) R_{s}}$
Current Gain	βο	βο	β _o +1	$\frac{\beta_o}{\beta_o + 1}$
Input Impedance	r_{π} // R_{B}	$\left[r_{\pi} + (\beta_o + 1)R_E\right] // R_B$	$\left[r_{\pi} + (\beta_o + 1)R_E\right] // R_B$	$\frac{r_{\pi}}{\beta_o + 1}$
Output Impedance	R∟	R_L	$\left \left[\frac{\left(r_{\pi} + R_{s} // R_{B} \right)}{\beta_{o} + 1} \right] // R_{E} \right $	R_L
	[if $r_o \gg R_L$]	[if $r_o \gg R_L$]	$\begin{bmatrix} \rho_o + 1 \end{bmatrix}$	[if $r_0 \gg R_L$]
Phase Reversal?	Yes	Yes	No	No

JFET'S

Characteristic	Common Source	C Source with	Common Drain	Common Gate
		R_s	[Source Follower]	
Voltage Gain	$A_{v} = -g_{m}R_{L}$	$A_{v} = \frac{-g_{m}R_{L}}{1 + g_{m}R_{S}}$	$A_{v} = \frac{g_{m}R_{S}}{1 + g_{m}R_{S}}$	$A_{v} = \frac{g_{m}R_{L}}{R}$
[if $r_{ds} \gg R_L$]		$1+g_m R_S$	$1+g_m R_S$	$A_{v} = \frac{g_{m}R_{L}}{1 + g_{m}R_{i} + \frac{R_{i}}{R_{S}}}$
				R _i = generator resistance
Current Gain	I_D	I_D	I_D	$A_i = \frac{g_m R_S}{g_m R_S + 1}$
	$I_{\scriptscriptstyle S}$	$\frac{I_D}{I_S}$	$\frac{I_D}{I_S}$	$g_m R_S + 1$
	Very large!	Very large!	Very large!	
Input	R_G	R_G	R_{G}	$\frac{R_S}{R_S} = \frac{1}{R_S} / / R_S$
Impedance				$\frac{1}{g_m R_S + 1} = \frac{1}{g_m} / R_S$
Output	R_L	R_L	$R_{\rm s}$ 1	R_L
Impedance	$[if r_{ds} >> R_L]$	[if $r_{ds} \gg R_L$]	$\frac{R_S}{g_m R_S + 1} = \frac{1}{g_m} // R_S$	[if $r_{ds} \gg R_L$]
Phase	Yes	Yes	No	No
Reversal?				

Hybrid- π Equation Chart