DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY ## CAMBRIDGE, MASSACHUSETTS 02139 Low Frequency Hybrid- π Equation Chart ## **TRANSISTORS** | Characteristic | Common
Emitter | CE with R _E | CC [E. Follower] | Common Base | |------------------------------|-----------------------|---|--|--| | Voltage Gain
[if r₀ >>RL] | $A_{v} = -g_{m}R_{L}$ | $A_{_{\scriptscriptstyle V}} pprox - rac{R_{_L}}{R_{_E}}$ | $A_{_{\scriptscriptstyle V}} \approx 1$ | $A_{v} = \frac{\beta_{o} R_{L}}{r_{\pi} // R_{E} + (\beta_{o} + 1) R_{s}}$ | | Current Gain | βο | βο | β _o +1 | $\frac{\beta_o}{\beta_o + 1}$ | | Input
Impedance | r_{π} // R_{B} | $\left[r_{\pi} + (\beta_o + 1)R_E\right] // R_B$ | $\left[r_{\pi} + (\beta_o + 1)R_E\right] // R_B$ | $\frac{r_{\pi}}{\beta_o + 1}$ | | Output
Impedance | R∟ | R_L | $\left \left[\frac{\left(r_{\pi} + R_{s} // R_{B} \right)}{\beta_{o} + 1} \right] // R_{E} \right $ | R_L | | | [if $r_o \gg R_L$] | [if $r_o \gg R_L$] | $\begin{bmatrix} \rho_o + 1 \end{bmatrix}$ | [if $r_0 \gg R_L$] | | Phase Reversal? | Yes | Yes | No | No | ## JFET'S | Characteristic | Common Source | C Source with | Common Drain | Common Gate | |------------------------|----------------------------|--|--|---| | | | R_s | [Source Follower] | | | Voltage Gain | $A_{v} = -g_{m}R_{L}$ | $A_{v} = \frac{-g_{m}R_{L}}{1 + g_{m}R_{S}}$ | $A_{v} = \frac{g_{m}R_{S}}{1 + g_{m}R_{S}}$ | $A_{v} = \frac{g_{m}R_{L}}{R}$ | | [if $r_{ds} \gg R_L$] | | $1+g_m R_S$ | $1+g_m R_S$ | $A_{v} = \frac{g_{m}R_{L}}{1 + g_{m}R_{i} + \frac{R_{i}}{R_{S}}}$ | | | | | | R _i = generator resistance | | Current Gain | I_D | I_D | I_D | $A_i = \frac{g_m R_S}{g_m R_S + 1}$ | | | $I_{\scriptscriptstyle S}$ | $\frac{I_D}{I_S}$ | $\frac{I_D}{I_S}$ | $g_m R_S + 1$ | | | Very large! | Very large! | Very large! | | | Input | R_G | R_G | R_{G} | $\frac{R_S}{R_S} = \frac{1}{R_S} / / R_S$ | | Impedance | | | | $\frac{1}{g_m R_S + 1} = \frac{1}{g_m} / R_S$ | | Output | R_L | R_L | $R_{\rm s}$ 1 | R_L | | Impedance | $[if r_{ds} >> R_L]$ | [if $r_{ds} \gg R_L$] | $\frac{R_S}{g_m R_S + 1} = \frac{1}{g_m} // R_S$ | [if $r_{ds} \gg R_L$] | | Phase | Yes | Yes | No | No | | Reversal? | | | | | Hybrid- π Equation Chart