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Sequence Motifs

e what Is a sequence motif ?

— a sequence pattern of biological significance
o examples

— protein binding sites in DNA

— protein sequences corresponding to common
functions or conserved pieces of structure



Motifs and Profile Matrices

e given a set of aligned sequences, it IS
straightforward to construct a profile matrix
characterizing a motif of interest

shared motif sequence positions
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Motifs and Profile Matrices

* how can we construct the profile if the sequences
aren’t aligned?

— In the typical case we don’t know what the motif
looks like

,N'q.

e use an Expectation Maximization (EM) algorithm



The EM Approach

 EM is a family of algorithms for learning
probabilistic models in problems that involve

hidden state

 In our problem, the hidden state is where the motif

starts in each training sequence
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The MEME Algorithm

e Bailey & Elkan, 1993

 uses EM algorithm to find multiple motifs in a set
of sequences

 first EM approach to motif discovery: Lawrence &
Reilly 1990



Representing Motifs

e a motif iIs assumed to have a fixed width, W

» a motif Is represented by a matrix of
probabilities: Py represents the probability of
character ¢ in column k

o example: DNA motif with W=3

1 2 3

A 0.1 0.5 0.2

p: C 0.4 0.2 0.1
G 0.3 0.1 0.6

T 0.2 0.2 0.1



Representing Motifs

o we will also represent the “background” (i.e.
outside the motif) probability of each character

e P.o represents the probability of character ¢ in
the background

o example:
A 0.26
D, = C 0.24
0 ¢ 0.23
T 0.27



Basic EM Approach

« the element Z;; of the matrix Z represents the
probability that the motif starts in position j in
sequence |

o example: given 4 DNA sequences of length 6,
where W=3

1 2 3 4

segl 0.1 0.1 0.2 0.6

zz — seg2 0.4 0.2 0.1 0.3
seqg3 0.3 0.1 0.5 0.1

seg4 0.1 0.5 0.1 0.3



Basic EM Approach

given: length parameter W, training set of sequences
set initial values for p
do
re-estimate Z from p (E —step)
re-estimate p from Z (M-step)
until change inp <eg
return: p, Z



Basic EM Approach

« we’ll need to calculate the probability of a training
sequence given a hypothesized starting position:

J+W -1
Pr(X; 1Z; =1, p) = Hpck Hpckk,+1Hpck
k=]+W
before motif motif after motif

X. isthe ith sequence

Zij Is 1 if motif starts at position j in sequence |

Ck IS the character at position k in sequence |



Example

X.=G C|T G T|AG

O 1 2 3

A 0.25 0.1 0.5 0.2

p= C 0.25 0.4 0.2 0.1

G 0.25 0.3 0.1 0.6

T 0.25 0.2 0.2 0.1
Pr(X;1Zi;=1p) =

Peo X PcoX PraXPs2XPrs>XPao>Pso =

0.25%x0.25x0.2x0.1x0.1x0.25x0.25



The E-step: Estimating Z
 to estimate the starting positions in Z at step t

j — L-W+1

S Pr(X,1Z, =1 pV)Pr(z, =1)
k=1

o this comes from Bayes’ rule applied to

PI’(ZU— =1[ X, p(t))



The E-step: Estimating Z

 assume that it is equally likely that the motif will
start in any position

Z(t) - Pr(xi ‘Zij =1, p(t))m

j — L-W+1

Zpr(xi | Z; =1, p“))m
=




Example: Estimating Z
X=GCTGTAG

O 1 2 3
A 0.25 0.1 0.5 0.2
D = C 0.25 0.4 0.2 0.1
G 0.25 0.3 0.1 0.6
T 0.25 0.2 0.2 O.

/., =0.3x0.2x0.1x0.25x0.25x0.25x0.25
., =0.25%x0.4x0.2x0.6x0.25%x0.25x0.25

ij —

=1



The M-step: Estimating p

o recall pc,k represents the probability of character c in
position k ; values for position O represent the background

D) Ney + dc,k\
1 pseudo-counts

)
C Z(nb,k +d, )
b

> >z, k>0
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total # of ¢’'s _—

In data set



Example: Estimating p

A CAGCA
Z,,=012,,=07,2,,=01,2,,=0.1

AGGCASG
Z,, =04,2,,=01,2,,=01,2,,=0.4

T CAGTC
Z,,=022,,=06,2,,=0.12,,=0.1

Zl,l + Zl,3 + ZZ,1 + 23,3 +1

Paz = 2, 427y + 255+ 2y, +A



The EM Algorithm

 EM converges to a local maximum in the
likelihood of the data given the model:

[TPr(xX,1p)

 usually converges in a small number of iterations
e sensitive to initial starting point (i.e. values in p)
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MEME Enhancements to the
Basic EM Approach

 MEME builds on the basic EM approach in the
following ways:

— trying many starting points

— not assuming that there is exactly one motif
occurrence in every sequence

— allowing multiple motifs to be learned
— Incorporating Dirichlet prior distributions



Starting Points in MEME

for every distinct subsequence of length W in the
training set

— derive an initial p matrix from this subsequence
— run EM for 1 iteration

choose motif model (i.e. p matrix) with highest
likelihood

run EM to convergence



Using Subseguences as Starting
Points for EM

set values corresponding to letters in the
subsequence to X

set other values to (1-X)/(M-1) where M Is the
length of the alphabet

example: for the subsequence TAT with X=0.5

1 2 3
0.17 0.5 0.17
0.17 0.17 0.17
0.17 0.17 0.17
0.5 0.17 0.5
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The ZOOPS Model

 the approach as we’ve outlined it, assumes that each
sequence has exactly one motif occurrence per sequence,
this is the OOPS model

o the ZOOPS model assumes zero or one occurrences per
seguence
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E-step In the ZOOPS Model

e we need to consider another alternative: the ith sequence
doesn’t contain the motif

e we add another parameter (and its relative)

A = prior prob that any position in a
sequence Iis the start of a motif

_(l _ = prior prob of a sequence
/ (L w +1)/1 containing a motif



E-step In the ZOOPS Model

0 _ Pr(X;1Z; =1, p")A"

' L-W+1

P 1Q =0, p)A-7 )+ YPH(X; |2, =1, p)A"

e here Qi isarandom variable that takes on 0 to indicate
that the sequence doesn’t contain a motif occurrence

L-W+1

Q= 2.2,



M-step in the ZOOPS Model

e update p same as before

o update 4,7 as follows

t+1

ﬂ(t-l—l) _ 7/( ) bt

(L-W +1) n(L ~W +1) Z;,Z;Z ‘

o average of Z" across all sequences, positions



The TCM Model

e the TCM (two-component mixture model)
assumes zero or more motif occurrences per
sequence
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Likelihood 1n the TCM Model

o the TCM model treats each length W subsequence
Independently

 to determine the likelihood of such a subsequence:

J+W -1

. . assuming a motif
I:)r(xij ‘ Zij _1’ p) R H pck,k—j+1 starts there
k=]

| +W -1 : :
Al assuming a motif

Pr(Xij ‘Zij =0,p) = H Pe, .0 doesn’t start there

k=]



E-step in the TCM Model

Pr(X;,; 1Z; =1 p*)A"

Z\) =
] _ (t) (t) _ UAWIO)
Pr(X;;1Z; =0,p7")A-A")+Pr(X;;1Z; =1,p™)A
~— e | _J
v Y
subsequence isn’t a motif subsequence is a motif

o M-step same as before



Finding Multiple Motifs

 Dbasic idea: discount the likelihood that a new
motif starts in a given position if this motif would
overlap with a previously learned one

» when re-estimating Z;, , multiply by Pr(V; =1)

v {1, no previous motifsin [X, ;... X; iyl

) 0, otherwise

* V; is estimated using Z; values from previous
passes of motif finding
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Gibbs Sampling

a general procedure for sampling from the joint
distribution of a set of random variables Pr(U,...U )

by iteratively sampling from Pr(U; |U,..U ;U ..U )
for each |

application to motif finding: Lawrence et al. 1993
can view It as a stochastic analog of EM for this task
less susceptible to local minima than EM



Gibbs Sampling Approach

* in the EM approach we maintained a distribution Z.
over the possible motif starting points for each sequence

 in the Gibbs sampling approach, we’ll maintain a specific
starting point for each sequence a; but we’ll keep
resampling these



Gibbs Sampling Approach

given: length parameter W, training set of sequences
choose random positions for a
do
pick a sequence X,
estimate p given current motif positions a (update step)
(using all sequences but X. )
sample a new motif position @, for X; (sampling step)
until convergence
return: p, a



Sampling New Motif Positions

for each possible starting position, a. = J , compute a
Welght j+W -1

| | Pe, k—j+1
_ k=)
Aj T j+Hw—l

H pck,O
k=]

randomly select a new starting position a. according to
these weights




Gibbs Sampling (AlignACE)

o Given
—xi ... xN .
|
— motif length K, ZN:ZK: log M (K, Xai+k)
— background B, el Lt B(X:ai+k)
e FiInd:
— Model M

— Locations ay,..., ay in x4, ..., xN

Maximizing log-odds likelihood ratio:



Gibbs Sampling (AlignACE)

o AlignACE: first statistical motif finder
e BioProspector: improved version of AlignACE

Algorithm (sketch):

1. [Initialization:
a. Select random locations in sequences x4, ..., xN
b. Compute an initial model M from these locations

2. Sampling lterations:
a. Remove one sequence X!
b. Recalculate model

c. Pick a new location of motif in x' according to
probability the location is a motif occurrence




Gibbs Sampling (AlignACE)

Initialization:
e Select random locations a,,..., ay in x, ..., xN
e For these locations, compute M:

kj _Z(Xa+k — J)

« Thatis, M Is the number of occurrences of letter | in motif
position Kk, over the total



Gibbs Sampling (AlignACE)

...........................

Predictive Update:

« Select a sequence x = X'
* Remove X/, recompute model:

My = (N-1)1B (5, +S::LZ’S:¢i(Xas+k = 1))

where f; are pseudocounts to avoid Os,
and B = %, 3



Gibbs Sampling (AlignACE)

Sampling:

For every K-long word Xx;,..., X, IN X:

Q; = Prob[ word | motif | = M(1,x;)x...xM(K;X; 1)
P; = Prob[ word | background ] B(x;)x...xB(X;;)

et
Qj / Pj Prob
i T kL
ZQJ / Pj R "0
j=1 0 IX|

Sample a random new position a, according to the
probabilities A,,..., Ay 1



Gibbs Sampling (AlignACE)

Running Gibbs Sampling:
1. Initialize
2. Run until convergence

3. Repeat 1,2 several times, report common motifs



Advantages / Disadvantages

e Verysimilarto EM

Advantages:

o Easier to implement

« Less dependent on initial parameters

* More versatile, easier to enhance with heuristics

Disadvantages:
* More dependent on all sequences to exhibit the motif
e Less systematic search of initial parameter space




Repeats, and a Better Background
Model

* Repeat DNA can be confused as motif
— Especially low-complexity CACACA... AAAAA, etc.

Solution:

more elaborate background model
0" order: B = { pa, Pcr Per P1}
1storder: B = { P(AJA), P(A|C), ..., P(T|T) }
K order: B={P(X|b,...b,); X, b;e{A,C,G,T}}

Has been applied to EM and Gibbs (up to 3@ order)



Example Application: Motifs in Yeast

Group:

Tavazole et al. 1999, G. Church’s lab, Harvard

Data:

e Microarrays on 6,220 mRNAs from yeast
Affymetrix chips (Cho et al.)

15 time points across two cell cycles



Processing of Data

1. Selection of 3,000 genes

e (Genes with most variable expression were selected

o Clustering according to common expression

e K-means clustering
o 30 clusters, 50-190 genes/cluster
o Clusters correlate well with known function

1. AlignACE motif finding

e 600-long upstream regions
e 50 regions/trial



Motifs 1n Periodic Clusters
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Motifs in Non-periodic Clusters
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