
Jan. 28, 2010	 Homework 4 6.094: Introduction to Matlab

Homework 4

This homework is designed to give you practice with more advanced and specific Matlab functionality,

like advanced data structures, images, and animation. As before, the names of helpful functions are

provided in bold where needed. Homework must be submitted before the start of the next class.

What to turn in: Copy the text from your scripts and paste it into a document. If a question asks you to

plot or display something to the screen, also include the plot and screen output your code generates.

Submit either a *.doc or *.pdf file.

Keep all your code in scripts/functions. If a specific name is not mentioned in the problem statement,

you can choose your own script names.

1.	 Random variables. Make a vector of 500 random numbers from a Normal distribution with

mean 2 and standard deviation 5 (randn). After you generate the vector, verify that the sample

mean and standard deviation of the vector are close to 2 and 5 respectively (mean, std).

2.	 Flipping a coin. Write a script called coi nTest . mto simulate sequentially flipping a coin 5000

times. Keep track of every time you get ‘heads’ and plot the running estimate of the probability

of getting ‘heads’ with this coin. Plot this running estimate along with a horizontal line at the

expected value of 0.5, as below. This is most easily done without a loop (useful functions: rand,

round, cumsum).

Sample Probability of Heads in n flips of a simulated coin

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of coin flips

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro

ba
bi

lit
y

of
 h

ea
ds

Sample Probability

Fair coin

1

Jan. 28, 2010	 Homework 4 6.094: Introduction to Matlab

3.	 Histogram. Generate 1000 Poisson distributed random numbers with parameter λ = 5
(poissrnd). Get the histogram of the data and normalize the counts so that the histogram sums

to 1 (hist – the version that returns 2 outputs N and X, sum). Plot the normalized histogram

(which is now a probability mass function) as a bar graph (bar). Hold on and also plot the actual

Poisson probability mass function with λ = 5 as a line (poisspdf). You can try doing this with

more than 1000 samples from the Poisson distribution to get better agreement between the

two.

Poisson distribution and observed histogram

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Value

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
ro

ba
bi

lit
y

Experimental histogram

Actual Poisson Distribution

2

Jan. 28, 2010	 Homework 4 6.094: Introduction to Matlab

4.	 Practice with cells. Usually, cells are most useful for storing strings, because the length of each

string can be unique.

a. Make a 3x3 cell where the first column contains the names: ‘Joe’, ’Sarah’, and ’Pat’, the

second column contains their last names: ‘Smith’, ‘Brown’, ‘Jackson’, and the third

column contains their salaries: $30,000, $150,000, and $120,000. Display the cell using

disp.

b. Sarah gets married and changes her last name to ‘Meyers’. Make this change in the cell

you made in a. Display the cell using disp.

c. Pat gets promoted and gets a raise of $50,000. Change his salary by adding this amount

to his current salary. Display the cell using disp.

The output to parts a-c should look like this:

5.	 Using Structs. Structs are useful in many situations when dealing with diverse data. For

example, get the contents of your current directory by typing a=di r ;

a.	 a is a struct array. What is its size? What are the names of the fields in a?

b.	 write a loop to go through all the elements of a, and if the element is not a directory,

display the following sentence ‘File filename contains X bytes’, where filename is the

name of the file and X is the number of bytes.

c.	 Write a function called di spl ayDi r . m, which will display the sizes of the files in the

current directory when run, as below:

3

Jan. 28, 2010 Homework 4 6.094: Introduction to Matlab

6. Handles. We’ll use handles to set various properties of a figure in order to make it look like this:

0 1 2
-1

-0.5

0

0.5

1
One sine wave from 0 to 2ππππ

X values (in terms of π)

S
in

(X
)

a. Do all the following in a script named handl esPr act i ce. m

b. First, make a variable x that goes from 0 to 2π , and then make y=si n(x) .

c. Make a new f i gur e and do pl ot (x, y, ’ r ’)

d. Set the x limit to go from 0 to 2π (xlim)

e. Set the xt i ck property of the axis to be just the values [0 pi 2* pi] , and set

xt i ckl abel to be { ‘ 0’ , ’ 1’ , ’ 2’ } . Use set and gca

f. Set the yt i ck property of the axis to be just the values - 1: . 5: 1. Use set and gca

g. Turn on the grid by doing gr i d on.

h. Set the ycol or property of the axis to green, the xcol or property to cyan, and the

col or property to black (use set and gca)

i. Set the col or property of the figure to a dark gray (I used [.3 .3 .3]). Use set and gcf

j. Add a title that says ‘One sine wave from 0 to 2π’ with f ont si ze 14, f ont wei ght

bold, and col or white. Hint: to get the π to display properly, use \pi in your string.

Matlab uses a Tex or Latex interpreter in xlabel, ylabel, and title. You can do all this just

by using title, no need for handles.

k. Add the appropriate x and y labels (make sure the π shows up that way in the x label)

using a f ont si ze of 12 and col or cyan for x and green for y. Use xlabel and ylabel

l. Before you copy the figure to paste it into word, look at copy options (in the figure’s Edit

menu) and under ‘figure background color’ select ‘use figure color’.

4

Jan. 28, 2010	 Homework 4 6.094: Introduction to Matlab

7.	 Image processing. Write a function to display a color image, as well as its red, green, and blue

layers separately. The function declaration should be i m=di spl ayRGB(f i l ename) .

f i l ename should be the name of the image (make the function work for *.jpg images only).

i mshould be the final image returned as a matrix. To test the function, you should put a jpg file

into the same directory as the function and run it with the filename (include the extension, for

example i m=di spl ayRGB(‘ t est I mage. j pg’)). You can use any picture you like, from

your files or off the internet. Useful functions: imread, meshgrid, interp2, uint8, image, axis

equal, axis tight.

a.	 To make the program work efficiently with all image sizes, first interpolate each color

layer of the original image so that the larger dimension ends up with 800 pixels. The

smaller dimension should be appropriately scaled so that the length:width ratio stays

the same. Use interp2 with cubic interpolation to resample the image.

b.	 Create a composite image that is 2 times as tall as the original, and 2 times as wide.

Place the original image in the top left, the red layer in the top right, the green layer in

the bottom left, and the blue layer in the bottom right parts of this composite image.

The function should return the composite image matrix in case you want to save it as a

jpg again (before displaying or returning, convert the values to unsigned 8-bit integers

using uint8). Hint: To get just a single color layer, all you have to do is set the other two

layers to zero. For example if X is an MxNx3 image, then X(: , : , 2) =0;

X(: , : , 3) =0; will retain just the red layer. Include your code and the final image in

your homework writeup. It should look something like this:

100

200

300

400

500

600

700

800

900

1000

200 400 600 800 1000 1200 1400 1600

5

Jan. 28, 2010	 Homework 4 6.094: Introduction to Matlab

8.	 Animation: Brownian motion. Write a function with the following declaration: br own2D(N) .

The function takes in a single input N, which is an integer specifying the number of points in the

simulation. All the points should initially start at the origin (0,0). Plot all the points on a figure

using ‘.’ markers, and set the axis to be square and have limits from -1 to 1 in both the x and y

direction. To simulate Brownian motion of the points, write a 1000-iteration loop which will

calculate a new x and y position for each point and will display these new positions as an

animation. The new position of each point is obtained by adding a normally distributed random

variable with a standard deviation of 0.005 to each x and y value (use randn; if you have 100

points, you need to add 100 distinct random values to the x values and 100 distinct random

values to the y values). Each time that the new positions of all the points are calculated, plot

them on the figure and pause for 0.01 seconds (it’s best to use set and the line object handle in

order to update the xdata and ydata properties of the points, as mentioned in lecture).

What you will see is a simulation of diffusion, wherein the particles randomly move away from

the center of the figure. For example, 100 points look like the figures below at the start, middle,

and end of the simulation:

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

1 1

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0 0

-0.2 -0.2

-0.4 -0.4

-0.6 -0.6

-0.8 -0.8

-1 -1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

6

Jan. 28, 2010	 Homework 4 6.094: Introduction to Matlab

Optional Problem

9.	 Optional: Julia Set Animation. In this problem, we will animate the Julia Set problem from

Homework 3. If you haven’t done the Julia Set problem in HW3, you can still do this one because

the j ul i a program has to be rewritten anyway. To review: two complex numbers z0 and c

define a recursive relationship for subsequent values of zn with n = 1, 2,3... :

zn = zn
2
−1 + c

The escape velocity of a particular z0 is equal to the time step n at which zn > 2 . You will

write a program to compute the escape velocities of an entire grid of z0 values. To make the

animation look cool, we’ll have to do things a bit differently than they were done in HW3: in

HW3, you computed the escape velocity of a particular z0 , then moved on to the next z0 and

computed its escape velocity, etc. In this version of the program. We’ll compute zn+1 for the

entire grid of z0 ’s, and for each n, find and mark all the z0 ’s that ‘escape’ for that n and display

them. The following steps will lead you to this end

a.	 Write the function j ul i aAni mat i on(zMax, c, N) , which takes three inputs: zMax

is a real number that describes the section of the complex plane that we’ll be looking at.

We’re going to compute escape velocities for numbers with real part between –zMax

and zMax , and imaginary part between –zMax and zMax . c is the c parameter, and N

is the maximum number of iterations (and since we’re displaying each iteration as a

frame in our animation, it’s also the number of frames we’ll see).

b.	 In this function, first make a vector t emp, which has 500 values between –zMax and

zMax . Then, use t emp within meshgrid to make R and I , which are two real matrices

containing the real and imaginary parts of a complex matrix Z. The convention in the

complex plane is to have the real part vary across the x dimension, and the imaginary

part vary across the y dimension. To make Z, simply add up R and i * I (you have to

multiply I by the imaginary number i in order to make it imaginary). Now Z contains

250,000 complex numbers, and we’ll compute escape velocities for all of them.

c.	 Initialize a matrix Mto be the same size as Z, and whose elements all have the value N.

d.	 Now, write a loop that will iterate for values of n from 1 to N. In each iteration of the

loop, compute the new Z using the equation zn = zn
2
−1 + c . Then, find the indices of all

the numbers in Z which have ‘escaped’ (zn > 2), and set those indices in Mto have the

value of the current loop iteration n. Because these numbers have ‘escaped’, we don’t

care about them anymore, so set all those indices in Z to be NaN. Display the M matrix

by using i magesc(t emp, t emp, at an(0. 1* M)) ; axi s xy; dr awnow; .

Because the computation takes a while to do on its own, there is no need to do an

explicit pause, the dr awnow command tells the plot to update immediately rather

than waiting for the loop to finish.

7

Jan. 28, 2010	 Homework 4 6.094: Introduction to Matlab

e.	 When you run the function with something like :

j ul i aAni mat i on(. 35, - . 297491+i * . 641051, 100) , you will see the Julia Set

come to life. The figures below are from the beginning, middle, and end of the

animation:

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

f.	 Try your animation with various values of zMax and c to see various fractals. See the

Wikipedia entry http://en.wikipedia.org/wiki/Julia_set under ‘Quadratic polynomials’

for suggested values of c to make cool fractals, for example c=0. 8+i * 0. 156 gives

the image on the next page.

8

http://en.wikipedia.org/wiki/Julia_set

Jan. 28, 2010 Homework 4 6.094: Introduction to Matlab

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

9

MIT OpenCourseWare
http://ocw.mit.edu

6.094 Introduction to MATLAB®
January (IAP) 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

