
Jan. 27, 2010	 Homework 3 6.094: Introduction to Matlab

Homework 3

This homework is designed to give you practice writing functions to solve problems. The problems in this

homework are very common and you will surely encounter similar ones in your research or future

classes. As before, the names of helpful functions are provided in bold where needed. Homework must

be submitted before the start of the next class.

What to turn in: Copy the text from your scripts and paste it into a document. If a question asks you to

plot or display something to the screen, also include the plot and screen output your code generates.

Submit either a *.doc or *.pdf file.

Keep all your code in scripts/functions. If a specific name is not mentioned in the problem statement,

you can choose your own script names.

1.	 Linear system of equations. Solve the following system of equations using \. Compute and

display the error vector

3a + 6b + 4c = 1

a + 5b = 2

7b + 7c = 3

5

2.	 Numerical integration. What is the value of: ∫ xe − x/3 dx ? Use trapz or quad. Compute and

0

display the difference between your numerical answer and the analytical answer: −24 e−5/3 + 9 .

1	 2
3. Computing the inverse. Calculate the inverse of   and verify that when you multiply the

3	 4
original matrix by the inverse, you get the identity matrix (inv). Display the inverse matrix as well

as the result of the multiplication of the original matrix by its inverse.

4.	 Fitting polynomials. Write a script to load the data file randomData.mat (which contains

variables x and y) and fit first, second, third, fourth, and fifth degree polynomials to it. Plot the

data as blue dots on a figure, and plot all five polynomial fits using lines of different colors on

the same axes. Label the figure appropriately. To get good fits, you’ll have to use the centering

and scaling version of polyfit (the one that returns three arguments, see help) and its

counterpart in polyval (the one that accepts the centering and scaling parameters). It should

1

Jan. 27, 2010 Homework 3 6.094: Introduction to Matlab

look like this:

Polynomial fits to noisy data

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Y

Data
Order 1
Order 2
Order 3
Order 4
Order 5

100 110 120 130 140 150 160 170 180 190 200

X

2

Jan. 27, 2010	 Homework 3 6.094: Introduction to Matlab

5.	 Hodgkin-Huxley model of the neuron. You will write an ODE file to describe the spiking of a

neuron, based on the equations developed by Hodgkin and Huxley in 1952 (they received a

Nobel Prize for this work). The main idea behind the model is that ion channels in the neuron’s

membrane have voltage-sensitive gates that open or close as the transmembrane voltage

changes. Once the gates are open, charged ions can flow through them, affecting the

transmembrane voltage. The equations are nonlinear and coupled, so they must be solved

numerically.

a.	 Download the HH.zip file from the class website and unzip its contents into your

homework folder. This zip folder contains 6 m-files: alphah.m, alpham.m,

alphan.m, betah.m, betam.m, betan.m. These functions return the voltage-

dependent opening α (V)) and closing (β (V)) rate constants for the h, m, and n

Vα ()
gates: C ����⇀O↽����Vβ ()

b.	 Write an ODE file to return the following derivatives

dn = 1− n α V − nβ V

dt n

dm

() () n ()

= (− m)αm V − mβ ()1 () V
dt m

dh

dt	
= (− h)αh V − hβh ()1 () V

= − G n (− E) + G m h V − E) + G V − E)dV 1 (K
4 V K Na

3 (Na L (L)
dt C

and the following constants (C is membrane capacitance, G are the conductances and

E are the reversal potentials of the potassium (K), sodium (Na), and leak (L)
channels):

C = 1

GK	 = 36

GNa = 120

GL = 0.3

EK	 = −72

ENa = 55

EL = −49.4

c.	 Write a script called HH.m which will solve this system of ODEs and plot the

transmembrane voltage. First, we’ll run the system to steady state. Run the simulation

for 20ms (the timescale of the equations is ms) with initial values:

n = 0.5; m = 0.5;h = 0.5;V = −60 (ode45). Store the steady-state value of all 4

parameters in a vector called ySS. Make a new figure and plot the timecourse of V (t)
to	 verify that it reaches steady state by the end of the simulation. It should look

3

Jan. 27, 2010 Homework 3 6.094: Introduction to Matlab

something like this:

Approaching Steady State
40

20

T
ra

ns
m

em
br

an
e

V
ol

ta
ge

 (
m

V
) 0

-20

-40

-60

-80
0 2 4 6 8 10 12 14 16 18 20

Time (ms)

d.	 Next, we’ll explore the trademark feature of the system: the all-or-none action

potential. Neurons are known to ‘fire’ only when their membrane surpasses a certain

voltage threshold. To find the threshold of the system, solve the system 10 times, each

time using ySS as the initial condition but increasing the initial value of V by 1, 2, … 10

mV from its steady state value. After each simulation, check whether the peak voltage

surpassed 0mV, and if it did, plot the voltage with a red line, but if it didn’t, plot it with a

black line. Plot all the membrane voltage trajectories on the same figure, like below. We

see that if the voltage threshold is surpassed, then the neuron ‘fires’ an action potential;

otherwise it just returns to the steady state value. You can zoom in on your figure to see

the threshold value (the voltage that separates the red lines from the black lines).

Threshold Behavior

-80

-60

-40

-20

0

20

40

60

T
ra

ns
m

em
br

an
e

V
ol

ta
ge

 (
m

V
)

0 2 4 6 8 10 12 14 16 18 20
Time (ms)

4

Jan. 27, 2010	 Homework 3 6.094: Introduction to Matlab

Optional Problem

6.	 Optional, but highly recommended: Julia Sets. In this problem you will generate quadratic Julia

Sets. The following description is adapted from Wikipedia at http://en.wikipedia.org/wiki/Julia.

For more information about Julia Sets please read the entire article there.

Given two complex numbers, c and z0 , we define the following recursion:

zn = zn
2
−1 + c

This is a dynamical system known as a quadratic map. Given a specific choice of c and z0 , the

above recursion leads to a sequence of complex numbers z1, z2 , z3 … called the orbit of z0 .

Depending on the exact choice of c and z0 , a large range of orbit patterns are possible. For a

given fixed c , most choices of z0 yield orbits that tend towards infinity. (That is, the modulus

z grows without limit as n increases.) For some values of c certain choices of z0 yield orbits n

that eventually go into a periodic loop. Finally, some starting values yield orbits that appear to

dance around the complex plane, apparently at random. (This is an example of chaos.) These

starting values, z0 , make up the Julia set of the map, denoted Jc . In this problem, you will

write a MATLAB script that visualizes a slightly different set, called the filled-in Julia set (or

Prisoner Set), denoted Kc , which is the set of all z0 with orbits which do not tend towards

infinity. The "normal" Julia set Jc is the edge of the filled-in Julia set. The figure below

illustrates a Julia Set for one particular value of c . You will write MATLAB code that can

generate such fractals in this problem.

Im
(z

)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Re(z)

5

http://en.wikipedia.org/wiki/Julia

Jan. 27, 2010	 Homework 3 6.094: Introduction to Matlab

a.	 It has been shown that if the modulus of zn becomes larger than 2 for some n then it is

guaranteed that the orbit will tend to infinity. The value of n for which this becomes

true is called the ‘escape velocity’ of a particular z0 . Write a function that returns the

escape velocity of a given z0 and c . The function declaration should be:

n=escapeVelocity(z0,c,N) where N is the maximum allowed escape velocity

(basically, if the modulus of zn does not exceed 2 for n<N, return N as the escape

velocity. This will prevent infinite loops). Use abs to calculate the modulus of a complex

number

b.	 To generate the filled in Julia Set, write the following function M=julia(zMax,c,N).

zMax will be the maximum of the imaginary and complex parts of the various z0 ’s for

which we will compute escape velocities. c and N are the same as defined above, and M

is the matrix that contains the escape velocity of various z0 ‘s.

i.	 In this function, you first want to make a 500x500 matrix that contains complex

numbers with real part between –zMax and zMax, and imaginary part

between –zMax and zMax. Call this matrix Z. Make the imaginary part vary

along the y axis of this matrix. You can most easily do this by using linspace and

meshgrid, but you can also do it with a loop.

ii.	 For each element of Z, compute the escape velocity (by calling your

escapeVelocity) and store it in the same location in a matrix M. When

done, the matrix M should be the same size as Z and contain escape velocities

with values between 1 and N.

iii.	 Run your julia function with various zMax, c, and N values to generate

various fractals. To display the fractal nicely, use imagesc to visualize

atan(0.1*M), (taking the arctangent of M makes the image look nicer; you

may also want to use axis xy so the y values aren’t flipped). WARNING: this

function may take a while to run.

6

Jan. 27, 2010 Homework 3 6.094: Introduction to Matlab

The figure below was created by running:

M=julia(1,-.297491+i*0.641051,100); and visualizing it as described above.

Im
(z

)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Re(z)

7

1

Jan. 27, 2010 Homework 3 6.094: Introduction to Matlab

The figure below was generated by running the same c parameter as above, but on a smaller

range of z values and with a larger N:

M=julia(.35,-.297491+i*0.641051,250);

Im
(z

)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Re(z)

8

MIT OpenCourseWare
http://ocw.mit.edu

6.094 Introduction to MATLAB®
January (IAP) 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

