
6.092: Introduction to Java  
6: Design, Debugging,

Interfaces

Assignment 5: main()

Programs start at a main() method, but
many classes can have main()

public class SimpleDraw {

/* ... stuff ... */

public static void main(String args[]) {

SimpleDraw content = new SimpleDraw(new DrawGraphics());

/* ... more stuff ... */

}

}

Assignment 5: main()

Programs start at a main() method, but
many classes can have main()

public class SimpleDraw {

 /* ... stuff ... */

public static void main(String args[]) {

SimpleDraw content = new SimpleDraw(new DrawGraphics());

 /* ... more stuff ... */

}

}

public class DrawGraphics {

BouncingBox box;

public DrawGraphics() {

box = new BouncingBox(200, 50, Color.RED);

}

public void draw(Graphics surface) {

surface.drawLine(50, 50, 250, 250);

box.draw(surface);

}

}

public class DrawGraphics {

BouncingBox box; // a field or member variable

public DrawGraphics() {

 box = new BouncingBox(200, 50, Color.RED);

}

public void draw(Graphics surface) {

 surface.drawLine(50, 50, 250, 250);

box.draw(surface);

}

}

public class DrawGraphics {

BouncingBox box;

public DrawGraphics() { // constructor

box = new BouncingBox(200, 50, Color.RED);

}

public void draw(Graphics surface) {

 surface.drawLine(50, 50, 250, 250);

box.draw(surface);

}

}

public class DrawGraphics {

public void draw(Graphics surface) {

surface.drawLine(50, 50, 250, 250);

box.draw(surface);

surface.fillRect (150, 100, 25, 40);

surface.fillOval (40, 40, 25, 10);

surface.setColor (Color.YELLOW);

surface.drawString ("Mr. And Mrs. Smith", 200, 10);

}

}

public class DrawGraphics {

ArrayList<BouncingBox> boxes = new ArrayList<BouncingBox>();

 public DrawGraphics() {

boxes.add(new BouncingBox(200, 50, Color.RED));

boxes.add(new BouncingBox(10, 10, Color.BLUE));

boxes.add(new BouncingBox(100, 100, Color.GREEN));

boxes.get(0).setMovementVector(1, 0);

boxes.get(1).setMovementVector(-3, -2);

boxes.get(2).setMovementVector(1, 1);

}

 public void draw(Graphics surface) {

for (BouncingBox box : boxes) {

box.draw(surface);

}

}

}

Outline

Good program design

Debugging

Interfaces

What is a good program?

Correct / no errors

Easy to understand

Easy to modify / extend

Good performance (speed)

Consistency

Writing code in a consistent way makes it
easier to write and understand

Programming “style” guides: define rules
about how to do things

Java has some widely accepted

“standard” style guidelines

Naming

Variables: Nouns, lowercase first letter, capitals

separating words

x, shape, highScore, fileName

Methods: Verbs, lowercase first letter

getSize(), draw(), drawWithColor()

Classes: Nouns, uppercase first letter

Shape, WebPage, EmailAddress

Good Class Design

Good classes: easy to understand and use

•	 Make fields and methods private by default

•	 Only make methods public if you need to

•	 If you need access to a field, create a

method:

public int getBar() { return bar; }

Debugging

The process of finding and correcting an
error in a program

A fundamental skill in programming

Step 1: Donʼt Make Mistakes

Donʼt introduce errors in the first place

Step 1: Donʼt Make Mistakes

Donʼt introduce errors in the first place

•	 Reuse: find existing code that does
what you want

•	 Design: think before you code

•	 Best Practices: Recommended

procedures/techniques to avoid
common problems

Design: Pseudocode

A high-level, understandable description

of what a program is supposed to do

Donʼt worry about the details, worry about
the structure

Pseudocode: Interval Testing

Example:

Is a number within the interval [x, y)?

If number < x return false

If number > y return false

Return true

Design

Visual design for objects, or how a
program works

Donʼt worry about specific notation, just
do something that makes sense for you

Scrap paper is useful

SimpleDraw

DrawGraphics

ArrayList

BouncingBox BouncingBox BouncingBox

Step 2: Find Mistakes Early

Easier to fix errors the earlier you find
them

• Test your design

• Tools: detect potential errors

• Test your implementation

• Check your work: assertions

Testing: Important Inputs

Want to check all “paths” through the
program.

Think about one example for each “path”

Example:

Is a number within the interval [x, y)?

Intervals: Important Cases

Below the lower bound

Equal to the lower bound

Within the interval

Equal to the upper bound

Above the upper bound

Intervals: Important Cases

What if lower bound > upper bound?

What if lower bound == upper bound?

(hard to get right!)

Pseudocode: Interval Testing

Is a number within the interval [x, y)?

If number < x return false

If number > y return false

Return true

Pseudocode: Interval Testing

Is a number within the interval [x, y)?

Is 5 in the interval [3, 5)?

If number < x return false

If number > y return false

Return true

Pseudocode: Interval Testing

Is a number within the interval [x, y)?

Is 5 in the interval [3, 5)?

If number < x return false

If number >= y return false

Return true

Tools: Eclipse Warnings

Warnings: may not be a mistake, but it
likely is.

Suggestion: always fix all warnings

Extra checks: FindBugs and related tools

Unit testing: JUnit makes testing easier

Assertions

Verify that code does what you expect

If true: nothing happens

If false: program crashes with error

Disabled by default (enable with ‐ea)

assert difference >= 0;

void printDifferenceFromFastest(int[] marathonTimes) {

int fastestTime = findMinimum(marathonTimes);

for (int time : marathonTimes) {

int difference = time - fastestTime;

assert difference >= 0;

System.out.println("Difference: " + difference);

}

}

Step 3: Reproduce the Error

• Figure out how to repeat the error

• Create a minimal test case

Go back to a working version, and
introduce changes one at a time until
the error comes back

Eliminate extra stuff that isnʼt used

Step 4: Generate Hypothesis

What is going wrong?

What might be causing the error?

Question your assumptions: “x canʼt be
possible:” What if it is, due to something
else?

Step 5: Collect Information

If x is the problem, how can you verify?
Need information about what is going
on inside the program

System.out.println() is very powerful

Eclipse debugger can help

Step 6: Examine Data

Examine your data

Is your hypothesis correct?

Fix the error, or generate a new
hypothesis

Why Use Methods?

Write and test code once, use it multiple
times: avoid duplication

Eg. Library.addBook()

Why Use Methods?

Use it without understanding how it works:

encapsulation / information hiding

Eg. How does System.out.println() work?

Why Use Objects?

Objects combine a related set of variables
and methods

Provide a simple interface

(encapsulation again)

Implementation / Interface

Library

Book[] books;
int numBooks;
String address;

void addBook(Book b) {
 books[numBooks] = b;
 numBooks++;
}

Library

void addBook(Book b);

Java Interfaces

Manipulate objects, without knowing how
they work

Useful when you have similar but not
identical objects

Useful when you want to use code written
by others

Interface Example: Drawing

public class BouncingBox {

public void draw(Graphics surface) {

// … code to draw the box …

 }

}

// … draw boxes …

for (BouncingBox box : boxes) {

box.draw(surface);

}

Interface Example: Drawing

public class Flower {

public void draw(Graphics surface) {

// … code to draw a flower …

 }

}

// … draw flowers …

for (Flower flower : flowers) {

flower.draw(surface);

}

public class DrawGraphics {

ArrayList<BouncingBox> boxes = new ArrayList<BouncingBox>();

ArrayList<Flower> flowers = new ArrayList<Flower>();

ArrayList<Car> cars = new ArrayList<Car>();

public void draw(Graphics surface) {

for (BouncingBox box : boxes) {

box.draw(surface);

}

for (Flower flower : flowers) {

flower.draw(surface);

}

for (Car car : cars) {

car.draw(surface);

}

}

}

public class DrawGraphics {

ArrayList<Drawable> shapes = new ArrayList<Drawable>();

ArrayList<Flower> flowers = new ArrayList<Flower>();

ArrayList<Car> cars = new ArrayList<Car>();

public void draw(Graphics surface) {

for (Drawable shape : shapes) {

shape.draw(surface);

}

for (Flower flower : flowers) {

flower.draw(surface);

}

for (Car car : cars) {

car.draw(surface);

}

}

}

Interfaces

Set of classes that share methods

Declare an interface with the common
methods

Can use the interface, without knowing an
objectʼs specific type

Interfaces: Drawable

import java.awt.Graphics;

interface Drawable {

void draw(Graphics surface);

 void setColor(Color color);

}

Implementing Interfaces

Implementations provide complete
methods:

import java.awt.Graphics;

class Flower implements Drawable {

// ... other stuff ...

public void draw(Graphics surface) {

// ... code to draw a flower here ...

}

}

Interface Notes

Only have methods (mostly true)

Do not provide code, only the definition
(called signatures)

A class can implement any number of
interface

Using Interfaces

Can only access stuff in the interface.

Drawable d = new BouncingBox(…);

d.setMovementVector(1, 1);

The method setMovementVector(int, int)

is undefined for the type Drawable

Casting

If you know that a variable holds a
specific type, you can use a cast:

Drawable d = new BouncingBox(…);

BouncingBox box = (BouncingBox) d;

box.setMovementVector(1, 1);

Assignment: More graphics

Start a new project: code has changed.

MIT OpenCourseWare
http://ocw.mit.edu

6.092 Introduction to Programming in Java
January (IAP) 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

