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6.090 IAP '05 - Homework 6

Assigned Tuesday January 18th.
Due 10am Wednesday January 19th.
   Submit a print-out of your .scm file. Should you encounter difficulty printing, the file may be emailed 
to the 6.090 staff. 

The Game of Nimrod

Long, long ago in places far far away, way before the advent of the computer game, neanderthals played 
games with sticks. In the pursuit of the wisdom of the ancients, we return to this humble setting in order 
to come to a deeper understanding of the universe and computer programming.

One such game was called Nimrod (after the man who invented it, Nimble Roderick). Nimrod is played 
with two piles of rods and two players. The objective is to be player who takes the last rod. A valid 
move is to take any number of rods from either pile, or an equal number from both. Play progresses until 
no rods remain.

A sample game: 

Pile A: 5     Pile B: 9
Ben takes 0 from pile A and 2 from pile B
Pile A: 5     Pile B: 7
Jen takes 2 from pile A and 2 from pile B
Pile A: 3     Pile B: 5
Ben takes 3 from pile A and 0 from pile B
Pile A: 0     Pile B: 5
Jen takes 0 from pile A and 5 from pile B
Pile A: 0     Pile B: 0
Jen wins! Ben loses!

Problems

Download the file nimrod.scm from the Assignments section and open it in scheme. You'll find a 
bunch of procedure definitions, some of them written and some not. You will fill in the unwritten 
definitions as part of this project. After writing each of the procedures, test the procedure(s) to see if 
they work. When you submit your work, you should turn in both the resulting nimrod.scm file that 
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you ended up with and a file of tests that show each of the procedures working. Please organize the test-
case file such that it easy to read (which results go with which procedures and suchlike).

Problem 1

Write a data abstraction for the piles. The piles contains two values: the number of rods in each pile. The 
constructor make-piles builds a piles from a pair of numbers. The selectors pile-a and pile-b 
pick out the lesser and greater pile respectively.

Problem 2

Implement empty-piles? and valid-piles? procedures. The piles are valid if they have a 
reasonable number of rods in them.

Problem 3

Implement the move abstraction.

Problem 4

Implement valid-move?, which returns true if the input move is a valid move according to the rules. 
Don't worry about what the state of the piles would be afterward (taking 600 from both piles is a valid 
move that probably results in invalid piles).

Problem 5

Implement apply-move, which takes piles and a move, and returns the piles that result from doing 
that move. Again, don't worry if the move or resulting piles are valid; that is checked elsewhere.

Problem 6

Play a game of nimrod using the play-nimrod procedure. For initial piles, use the random-piles 
procedure to generate some (min 1, max 15 produces nice short games). For strategies, use the human-
strat and play against someone (possibly yourself). When prompted for a number, enter the number 
and hit C-x, C-e. Then play human-strat against simple-strat and try to beat the computer. 
Turn in a log of your games.

Problem 7

Write a more interesting strategy and test it out.
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Optimal Strategy

The playing optimal strategy requires knowing the "lose positions". A lose position is a piles state from 
which the player next to play is guaranteed to lose against an optimal player. The smallest lose position 
is (0 0) by definition. By experimentation, the lose position (1 2) is quickly discovered. It takes a little 
more work to see the rest:

(0 0)
(1 2)
(3 5)
(4 7)
(6 10)
(8 13)
(9 15)
...

Two things to notice: the difference between the two piles increases by one for each successive lose 
position and each positive integer appears as either the low or high value in a lose position. These two 
things combine to ensure that no matter the state of the piles, if they are not currently in a lose position, 
it takes exactly one move to move the piles into a lose position.

The generation strategy is relatively simple: To generate the ith lose position, pick the lowest unused 
integer and that number from i. Cross off the two integers that were just used. 

Problem 8

First we need to be able to generate a list of a bunch of integers. Write list-of-ints which returns a 
list of integers in a given range.

Problem 9

Now we need a way to "cross off" a number from a list of numbers. Do this by implementing the 
procedure without-n that when given a list of numbers, returns a new list which contains all the 
numbers except the number n. You may assume that there are no duplicate numbers in the list.

Problem 10

Finish the implementation of lose-position-helper by filling in the two blanks. Blank 1 
constructs the new lose position. Blank 2 crosses off the used numbers from the list.
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Problem 11

Implement move-to, which tries to generate a valid move that will move from initial piles to the 
objective piles. For example, if the initial piles are (4 6) and the objective piles are (3 5), it should 
generate (1 1) as the required move. For initial (1 2) and objective (3 5), there is no valid move, so it 
should return false. Also test your code with initial (5 12) and objective (3 5) to make sure it works with 
"backwards" pile counts.

Problem 12

Test out the optimal strategy! Play it against itself a bunch of times to make sure it's working. Bask in 
the glory of success! (no need to turn anything in for this question)
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