6.090 IAP'05 - Homework 4

6.090 IAP '05 - Homework 4

Assigned Thursday January 13th.
Due 10am Friday January 14th.

Submit a print-out of your .scm file. Should you encounter difficulty printing, the file may be emailed
to the 6.090 staff.

Problem 1. Syntactic Sugar
1. Desugar the following expressions:

(define (foo x)
(+ x 5))
(let ((x 1))
X)
(let ((foo (= x 1))
(bar 7))
(if foo
bar
#f))
(define (weird x y z) ; this one's odd
(1 anbda (fo00)
(+ xy z foo)))

2. Evauate the following expressions (first guess, then check with M1TScheme).

(define x 5)
(define (y) (+ 7 7))
(let ((x 3))
(+ X X))
(let ((x (y))
(y 7))
(if (> x 3)
7
y)
(let ((mt 12))
(let ((is (+mt 1)))
(let ((hard (- is 7)))

file:///C|/Documents¥%20and%20Settings/zenphyx/Desktop/hw/hw4.html (1 of 4)3/30/2005 6:48:29 AM

6.090 IAP'05 - Homework 4

(+ mit is hard))))

Problem 2: Recursive and lterative processes

1. Exploration: Evaluate the following two definitionsin MITScheme.

(define (remai nder x vy)
(if (<xy)
X
(remai nder (- xXVYy) Vy)))
(define (fact n)
(if (=n0)
1
(* n(fact (- n1)))))

Then evaluate (f act 10) with the Stepper (use M-sinstead of C-x,C-€). Hold down the space
bar and watch how the computation unfolds. How would you describe the text as awhole asit
does the evaluation? How indented is it? What does the end (you can use M-> to go to the end of
a buffer) look like? Is there a point at which the process of evaluation changes? Keep in mind that
the stepper indents two spaces when it istrying to evaluate a subexpression.

Pop back to scheme and evaluate (r emai nder 30 3) with the Stepper (again, M-s). Hold
down the space bar again. How is this computation different? What does the end look like?

Explain these differences with reference to recursive vs iterative processes. (Y ou need not submit
the * Stepper* buffers you produce)

2. Thefollowing are two different implementations of s| ow add, a procedure that adds two
numbers which using any arithmetic procedures other than inc and dec:

(define (slow addl a b)
(if (= a0
b
(inc (slowaddl (dec a) b))))
(define (slow add2 a b)
(if (= a0
b
(sl owadd2 (dec a) (inc b))))

For each procedure, indicate whether it givesrise to arecursive or iterative process, and why.
Then test it with the stepper to verify your hypothesis (you need not submit the * Stepper* buffer
that you produce).

file:///C)/Documents¥%20and%20Settings/zenphyx/Desktop/hw/hw4.html (2 of 4)3/30/2005 6:48:29 AM

6.090 IAP'05 - Homework 4

3. Hereisthetransformation of f act from arecursiveto an iterative process that we did in class:

; recursive fact
(define (fact n)
(if (=n 0
1
(* n(fact (- n 1)))))
; Iterative fact
(define (fact n)
(fact-helper n 1))
. hel per for iterative version
(define (fact-helper n answer)
(if (=n 0
answer
(fact-helper (- n 1) (* n answer))))

We also wrotequot i ent inclass:

(define (quotient x y)

(if (< xy)
0

(+ 1 (quotient (- xy) y))))

Rewrite quot i ent to giveriseto an iterative process by following the pattern we used for
fact . Test your resulting procedure to make sure it works like the original. Then verify that it is
iterative by using the Stepper.

Problem 3: Lists

In MITScheme, #f isthe empty-list. Thus, ni | evaluatesto #f . So if you're trying to write build alist
that printsout like (3 () 4): alist of three e ements, with the empty list as the second element, and it
prints (3 #f 4), you've written the right thing!

1. Write the box-and-pointer for the given expressions (you'll find this irritating to submit
electronically)

(cons (cons 1 nil) (cons 2 nil))
(list (list (list 1) 2) 3)

(cons nil nil)

(append (list 3 2) (cons 1 nil))

file:///C)/Documents¥%20and%20Settings/zenphyx/Desktop/hw/hw4.html (3 of 4)3/30/2005 6:48:29 AM

6.090 IAP'05 - Homework 4

2. Write expression whose values print out like the following:

(7)

(Ilt hi SIl Ili SIl Ilyumll)

(C0)))

(("apples" 3) ("oranges" 2))

3. Hereisthel engt h procedure we wrotein class:

Pl an: Base case: enpty-list -> length is O
Recursive: length whole Ist =1 + length rest of |st
(define (length Ist)
(if (null? |st)
0
(+ 1 (length (cdr Ist)))))

Write aprocedure called sum | i st which takesin alist of numbers and outputs their sum.

(sumlist (list 1 2 3))

:Val ue: 6
(sumlist (list 7))
- Val ue: 7
(sumlist nil)
:Value: O

4. ExtraBonus Problem: Write aprocedure seven- on-t he- end which takesin alist and
returns anew list with 7 on the end.

(seven-on-the-end nil)

: Val ue: (7)

(seven-on-the-end (list 4))
;Value: (4 7)

(seven-on-the-end (list 4 7 5 3))
;Value: (47 5 3 7)

Tackle this problem by figuring out the base case, then the one-off base case (ie where the first
recursive call resultsin the base case).

file:///C|/Documents¥%20and%20Settings/zenphyx/Desktop/hw/hw4.html (4 of 4)3/30/2005 6:48:29 AM

	Local Disk
	6.090 IAP '05 - Homework 4

