6.087 Lecture 13 — January 28, 2010

@ Review




Review: Multithreaded programming

Thread: abstraction of parallel processing with shared
memory

Program organized to execute multiple threads in parallel

Threads spawned by main thread, communicate via
shared resources and joining

pthread library implements multithreading

int pthread_create(pthread_t * thread, const pthread_attr_t = attr,
void x(xstart_routine)(void x), void = arg);

void pthread_exit(void *value_ptr);
int pthread_join(pthread_t thread, void sxvalue_ptr);
pthread_t pthread_self(void);




Review: Resource sharing

¢ Access to shared resources need to be controlled to
ensure deterministic operation

e Synchronization objects: mutexes, semaphores, read/write
locks, barriers
e Mutex: simple single lock/unlock mechanism

int pthread_mutex_init(pthread_mutex_t xmutex, const pthread_mutexattr_t * attr);
int pthread_mutex_destroy(pthread_mutex_t xmutex);

int pthread_mutex_lock(pthread_mutex_t «mutex);

int pthread_mutex_trylock(pthread_mutex_t «mutex);

int pthread_mutex_unlock(pthread_mutex_t «mutex);




Review: Condition variables

¢ Lock/unlock (with mutex) based on run-time condition
variable

¢ Allows thread to wait for condition to be true

e Other thread signals waiting thread(s), unblocking them

int pthread_cond_init(pthread_cond_t xcond, const pthread_condattr_t *attr);
int pthread_cond_destroy(pthread_cond_t xcond);

int pthread_cond_wait(pthread_cond_t «cond, pthread_mutex_t *mutex);

int pthread_cond_broadcast(pthread_cond_t *xcond);

int pthread_cond_signal(pthread_cond_t *«cond);




6.087 Lecture 13 — January 28, 2010

@ Multithreaded Programming
e Race Conditions
e Semaphores
e Thread Safety, Deadlock, and Starvation




Multithreaded programming

OS implements scheduler — determines which threads
execute when

Scheduling may execute threads in arbitrary order

Without proper synchronization, code can execute
non-deterministically

Suppose we have two threads: 1 reads a variable, 2
modifies that variable

Scheduler may execute 1, then 2, or 2 then 1

Non-determinism creates a race condition — where the
behavior/result depends on the order of execution




Race conditions

Race conditions occur when multiple threads share a
variable, without proper synchronization

Synchronization uses special variables, like a mutex, to
ensure order of execution is correct
Example: thread T3 needs to do something before thread
T3

¢ condition variable forces thread T; to wait for thread T}

e producer-consumer model program
Example: two threads both need to access a variable and
modify it based on its value

e surround access and modification with a mutex
e mutex groups operations together to make them atomic —
treated as one unit




Race conditions in assembly

Consider the following program race.c:
unsigned int cnt = 0;

void xcount(void xarg) { /+ thread body =/
int i;
for (i = 0; i < 100000000; i++)
cnt++;
return NULL;
}

int main(void) {

pthread_t tids[4];

int i;

for (i = 0; i < 4; i++)
pthread_create(&tids[i], NULL, count, NULL);

for (i = 0; i < 4; i++)
pthread_join(tids[i], NULL);

printf ("cnt=%u\n",cnt);

return 0;

}

What is the value of cnt?

[Bryant and O’Halloran. Computer Systems: A Programmer’s Perspective.

Prentice Hall, 2003 ] © Prentice Hall. All rights reserved. This content is excluded from our Creative Commons license.
’ For more information, see http://ocw.mit.edu/fairuse.

Mir 6



http://ocw.mit.edu/fairuse

Race conditions in assembly

Ideally, should increment cnt 4 x 100000000 times, so
cnt = 400000000. However, running our code gives:

athena% ./race.o
cnt=137131900
athena% ./race.o
cnt=163688698
athena% ./race.o
cnt=163409296
athena% ./race.o
cnt=170865738
athena% ./race.o
cnt=169695163

So, what happened?

1
Athenais MIT's UNIX-based computing environment. OCW does not provide access to it.




Race conditions in assembly

C not designed for multithreading
No notion of atomic operations in C

Increment cnt++; maps to three assembly operations:

1. load cnt into a register
2. increment value in register
3. save new register value as new cnt

So what happens if thread interrupted in the middle?
Race condition!




Race conditions in assembly

Let’s fix our code:

pthread_mutex_t mutex;
unsigned int cnt = 0;

void xcount(void xarg) { /+ thread body =/
int i;
for (i = 0; i < 100000000; i++) {
pthread_mutex_lock (&mutex);
cnt++;
pthread_mutex_unlock(&mutex);

}
return NULL;
}

int main(void) {
pthread_t tids[4];

int i;
pthread_mutex_init(&mutex, NULL);
for (i = 0; i < 4; i++)

pthread_create(&tids[i], NULL, count, NULL);
for (i = 0; i < 4; i++)

pthread_join(tids[i], NULL);
pthread_mutex_destroy (&mutex);
printf ("cnt=%u\n",cnt);
return 0O;




Race conditions

Note that new code functions correctly, but is much slower

C statements not atomic — threads may be interrupted at
assembly level, in the middle of a C statement

Atomic operations like mutex locking must be specified as
atomic using special assembly instructions

Ensure that all statements accessing/modifying shared
variables are synchronized

10



Semaphores

e Semaphore — special nonnegative integer variable s,
initially 1, which implements two atomic operations:

e P (s) —wait until s > 0, decrement s and return
e V(s) —increment s by 1, unblocking a waiting thread

e Mutex — locking calls P (s) and unlocking calls v (s)

¢ Implemented in <semaphore.h>, part of library rt, not
pthread

11



Using semaphores

Initialize semaphore to value:

int sem_init(sem_t xsem, int pshared, unsigned int value);

Destroy semaphore:

int sem_destroy(sem_t xsem);

Wait to lock, blocking:

int sem_wait(sem_t xsem);

Try to lock, returning immediately (0 if now locked, —1
otherwise):

int sem_trywait(sem_t xsem);

Increment semaphore, unblocking a waiting thread:

int sem_post(sem_t «xsem);

12



Producer and consumer revisited

¢ Use a semaphore to track available slots in shared buffer
e Use a semaphore to track items in shared buffer

¢ Use a semaphore/mutex to make buffer operations
synchronous

13



Producer and consumer revisited

#include <stdio.h>
#include <pthread.h>
#include <semaphore.h>

sem_t mutex, slots, items;

#define SLOTS 2
#define ITEMS 10

voidx produce (voidx arg)
{
int i;
for (i = 0; i < ITEMS; i++)
{
sem_wait(&slots);
sem_wait(&mutex);
printf ("produced(%I!d):%d\n",
pthread_self (), i+1);
sem_post(&mutex);
sem_post(&items);

}
return NULL;
}

voidx consume(voidx arg)

{

int i;

for (i = 0; i < ITEMS; i++) {
sem_wait(&items);
sem_wait(&mutex);

printf ("consumed(%Id):%d\n",

pthread_self (), i+1);
sem_post(&mutex);
sem_post(&slots);

}
return NULL;
}

int main()

{

pthread_t tcons, tpro;

sem_init(&mutex, 0, 1);
sem_init(&slots, 0, SLOTS);
sem_init(&items, 0, 0);

pthread_create (&tcons ,NULL,consume ,NULL);
pthread_create (&tpro ,NULL, produce ,NULL);

pthread_join (tcons ,NULL);
pthread_join (tpro ,NULL);

sem_destroy (&mutex);
sem_destroy(&slots);
sem_destroy (&items);
return 0;

}

[Bryant and O’Halloran. Computer Systems: A Programmer’s Perspective.

I =wrentice Hall, 2003_] © Prentice Hall. All rights reserved. This content is excluded from our Creative Commons license.
l For more information, see http://ocw.mit.edu/fairuse. 14


http://ocw.mit.edu/fairuse

Other challenges

e Synchronization objects help solve race conditions

e Improper use can cause other problems
e Some common issues:

¢ thread safety and reentrant functions
¢ deadlock
» starvation

15



Thread safety

e Function is thread safe if it always behaves correctly when
called from multiple concurrent threads

¢ Unsafe functions fal in several categories:

accesses/modifies unsynchronized shared variables
functions that maintain state using static variables — like
rand (), strtok ()

functions that return pointers to static memory — like
gethostbyname ()

functions that call unsafe functions may be unsafe

16



Reentrant functions

¢ Reentrant function — does not reference any shared data
when used by multiple threads

¢ All reentrant functions are thread-safe (are all thread-safe
functions reentrant?)

¢ Reentrant versions of many unsafe C standard library
functions exist:

Unsafe function Reentrant version
rand () rand_r ()

strtok () strtok_r ()
asctime () asctime_r ()

ctime () ctime_r ()
gethostbyaddr () | gethostbyaddr_xr ()
gethostbyname () | gethostbyname_xr ()
inet_ntoa() (none)

localtime () localtime_r ()




Thread safety

To make your code thread-safe:

¢ Use synchronization objects around shared variables

¢ Use reentrant functions

¢ Use synchronization around functions returning pointers to

shared memory (lock-and-copy):

1. lock mutex for function
2. call unsafe function
3. dynamically allocate memory for result; (deep) copy result

into new memory
4. unlock mutex

18



Deadlock

Deadlock — happens when every thread is waiting on
another thread to unblock

Usually caused by improper ordering of synchronization
objects

Tricky bug to locate and reproduce, since
schedule-dependent

Can visualize using a progress graph — traces progress of
threads in terms of synchronization objects

19



Deadlock

Figure removed due to copyright restrictions. Please see

http://csapp.cs.cmu.edu/public/le/public/fiqures.html,
Figure 13.39, Progress graph for a program that can deadlock.



http://csapp.cs.cmu.edu/public/1e/public/figures.html

Deadlock

o Defeating deadlock extremely difficult in general

e When using only mutexes, can use the “mutex lock
ordering rule” to avoid deadlock scenarios:
A program is deadlock-free if, for each pair of mutexes (s, t)
in the program, each thread that uses both s and t
simultaneously locks them in the same order.

[Bryant and O’Halloran. Computer Systems: A Programmer’s Perspective
Prentice Hall, 2003.]

21



Starvation and priority inversion

e Starvation similar to deadlock

e Scheduler never allocates resources (e.g. CPU time) for a
thread to complete its task
e Happens during priority inversion
o example: highest priority thread 7, waiting for low priority
thread 75 to finish using a resource, while thread T3, which
has higher priority than 75, is allowed to run indefinitely
¢ thread T3 is considered to be in starvation

22



6.087 Lecture 13 — January 28, 2010

@ Sockets and Asynchronous I/O
e Sockets
e Asynchronous I/O

23



Sockets

Socket — abstraction to enable communication across a
network in a manner similar to file I/O

Uses header <sys/socket .h> (extension of C standard
library)

Network I/O, due to latency, usually implemented
asynchronously, using multithreading

Sockets use client/server model of establishing
connections

23



Creating a socket

¢ Create a socket, getting the file descriptor for that socket:
int socket(int domain, int type, int protocol);

e domain — use constant AF_INET, so we'’re using the
internet; might also use AF_INET6 for IPv6 addresses

e type — use constant SOCK_STREAM for connection-based
protocols like TCP/IP; use SOCK_DGRAM for connectionless
datagram protocols like UDP (we’ll concentrate on the
former)

e protocol — specify 0 to use default protocol for the socket
type (e.g. TCP)

¢ returns nonnegative integer for file descriptor, or —1 if
couldn’t create socket

¢ Don’t forget to close the file descriptor when you're done!

24



Connecting to a server

e Using created socket, we connect to server using:
int connect(int fd, struct sockaddr xaddr, int addr_len);
e f£d —the socket’s file descriptor
e addr —the address and port of the server to connect to; for
internet addresses, cast data of type struct
sockaddr_in, which has the following members:
e sin_family — address family; always AF_INET
e sin_port —portin network byte order (use htons () to

convert to network byte order)
® sin_addr.s_addr — IP address in network byte order (use

htonl () to convert to network byte order)
e addr_len —size of sockaddr_in structure
e returns 0 if successful

25



Associate server socket with a port

e Using created socket, we bind to the port using:
int bind(int fd, struct sockaddr xaddr, int addr_len);

e fd, addr, addr_len —same as for connect ()

¢ note that address should be IP address of desired interface
(e.g. eth0) on local machine

e ensure that port for server is not taken (or you may get
“address already in use” errors)

o return 0 if socket successfully bound to port

26



Listening for clients

¢ Using the bound socket, start listening:
int listen (int fd, int backlog);
e f£d —bound socket file descriptor
e backlog — length of queue for pending TCP/IP
connections; normally set to a large number, like 1024
e returns 0 if successful

27



Accepting a client’s connection

o Wait for a client’s connection request (may already be
queued):
int accept(int fd, struct sockaddr xaddr, int «xaddr_len);

e £d —socket’s file descriptor

e addr — pointer to structure to be filled with client address
info (can be NULL)

e addr_len — pointer to int that specifies length of structure
pointed to by addr; on output, specifies the length of the
stored address (stored address may be truncated if bigger
than supplied structure)

o returns (nonnegative) file descriptor for connected client
socket if successful

28



Reading and writing with sockets

e Send data using the following functions:
int write (int fd, const void xbuf, size_t len);

int send(int fd, const void xbuf, size_t len, int flags);

¢ Receive data using the following functions:
int read(int fd, void xbuf, size_t len);
int recv(int fd, void xbuf, size_t len, int flags);
f£d — socket’s file descriptor
buf — buffer of data to read or write
len — length of buffer in bytes
flags — special flags; we'll just use 0
all these return the number of bytes read/written (if
successful)

Mir 29



Asynchronous I/O

e Up to now, all I/O has been synchronous — functions do not
return until operation has been performed

e Multithreading allows us to read/write a file or socket
without blocking our main program code (just put I1/0O
functions in a separate thread)

e Multiplexed I/O — use select () or poll () with multiple
file descriptors

Mir 30



I/0 multiplexing with select ()

¢ To check if multiple files/sockets have data to
read/write/etc: (include <sys/select.h>)
int select(int nfds, fd_set xreadfds, fd_set xwritefds, fd_set xerrorfds, struct timeval xtimeout);

e nfds — specifies the total range of file descriptors to be
tested (0 up to nfds—1)

e readfds, writefds, errorfds —if not NULL, pointer to
set of file descriptors to be tested for being ready to read,
write, or having an error; on output, set will contain a list of
only those file descriptors that are ready

e timeout —if no file descriptors are ready immediately,
maximum time to wait for a file descriptor to be ready

¢ returns the total number of set file descriptor bits in all the
sets

e Note that select () is a blocking function

31



I/0 multiplexing with select ()

e fd_set —a mask for file descriptors; bits are set (“17) if in
the set, or unset (“0”) otherwise

¢ Use the following functions to set up the structure:

e FD_zERO@Idset) — iNitialize the set to have bits unset for all file
descriptors

o FD_SET(id, afdsety — Set the bit for file descriptor £d in the set

® FD_CLR(id, afdset) — Clear the bit for file descriptor £d in the set

® FD_ISSET(id, &fdset) — returns nonzero if bit for file descriptor £d is
set in the set

Mir 32



I/0 multiplexing using pol1 ()

e Similarto select (), but specifies file descriptors
differently: (include <pol1l.h>)
int poll (struct pollfd fds[], nfds_t nfds, int timeout);

e fds —an array of pol1£d structures, whose members f£d,
events, and revents, are the file descriptor, events to
check (OR-ed combination of flags like POLLIN, POLLOUT,
POLLERR, POLLHUP), and result of polling with that file
descriptor for those events, respectively

e nfds — number of structures in the array

e timeout —number of milliseconds to wait; use 0 to return
immediately, or —1 to block indefinitely

33



Summary

e Multithreaded programming
¢ race conditions
e semaphores
o thread safety
e deadlock and starvation
e Sockets, asynchronous 1/O

e client/server socket functions
e select () andpoll ()

34



MIT OpenCourseWare
http://ocw.mit.edu

6.087 Practical Programming in C
January (IAP) 2010

For information about citing these materials or our Terms of Use,visit: http://ocw.mit.edu/terms.


http://ocw.mit.edu
http://ocw.mit.edu/terms

	Review
	Multithreaded Programming
	Race Conditions
	Semaphores
	Thread Safety, Deadlock, and Starvation

	Sockets and Asynchronous I/O
	Sockets
	Asynchronous I/O


