
6.087 Lecture 13 – January 28, 2010

Review

Multithreaded Programming
Race Conditions
Semaphores
Thread Safety, Deadlock, and Starvation

Sockets and Asynchronous I/O
Sockets
Asynchronous I/O

1

Review: Multithreaded programming

•	 Thread: abstraction of parallel processing with shared
memory

•	 Program organized to execute multiple threads in parallel
•	 Threads spawned by main thread, communicate via

shared resources and joining
•	 pthread library implements multithreading

i n t pthread_create (p thread_t thread , const p t h r e a d _ a t t r _ t a t t r , ∗	 ∗•	
void ∗(∗ s t a r t _ r o u t i n e) (void ∗) , void ∗ arg) ;

•	 void pthread_exit(void ∗value_ptr);

•	 int pthread_join(pthread_t thread, void ∗∗value_ptr);

•	 pthread_t pthread_self(void);

1

Review: Resource sharing

Access to shared resources need to be controlled to •

ensure deterministic operation
•	 Synchronization objects: mutexes, semaphores, read/write

locks, barriers
•	 Mutex: simple single lock/unlock mechanism

•	 int pthread_mutex_init(pthread_mutex_t ∗mutex, const pthread_mutexattr_t ∗ attr);

•	 int pthread_mutex_destroy(pthread_mutex_t ∗mutex);

•	 int pthread_mutex_lock(pthread_mutex_t ∗mutex);

•	 int pthread_mutex_trylock(pthread_mutex_t ∗mutex);

•	 int pthread_mutex_unlock(pthread_mutex_t ∗mutex);

2

Review: Condition variables

• Lock/unlock (with mutex) based on run-time condition
variable

Allows thread to wait for condition to be true
•

• Other thread signals waiting thread(s), unblocking them
• int pthread_cond_init(pthread_cond_t ∗cond, const pthread_condattr_t ∗attr);

• int pthread_cond_destroy(pthread_cond_t ∗cond);

• int pthread_cond_wait(pthread_cond_t ∗cond, pthread_mutex_t ∗mutex);

• int pthread_cond_broadcast(pthread_cond_t ∗cond);

• int pthread_cond_signal(pthread_cond_t ∗cond);

3

6.087 Lecture 13 – January 28, 2010

Review

Multithreaded Programming
Race Conditions
Semaphores
Thread Safety, Deadlock, and Starvation

Sockets and Asynchronous I/O
Sockets
Asynchronous I/O

4

Multithreaded programming

•	 OS implements scheduler – determines which threads
execute when

•	 Scheduling may execute threads in arbitrary order
•	 Without proper synchronization, code can execute

non-deterministically
•	 Suppose we have two threads: 1 reads a variable, 2

modifies that variable
•	 Scheduler may execute 1, then 2, or 2 then 1

Non-determinism creates a race condition – where the •

behavior/result depends on the order of execution

4

Race conditions

•	 Race conditions occur when multiple threads share a
variable, without proper synchronization

•	 Synchronization uses special variables, like a mutex, to
ensure order of execution is correct

•	 Example: thread T1 needs to do something before thread
T2

•	 condition variable forces thread T2 to wait for thread T1

•	 producer-consumer model program
•	 Example: two threads both need to access a variable and

modify it based on its value

surround access and modification with a mutex
•

•	 mutex groups operations together to make them atomic –
treated as one unit

5

Race conditions in assembly

Consider the following program race.c:
unsigned i n t cnt = 0 ;

void ∗count (void ∗arg) { /∗ thread body ∗ /
i n t i ;
for (i = 0 ; i < 100000000; i ++)

cn t ++;
return NULL ;

}

i n t main (void) {
p thread_t t i d s [4] ;
i n t i ;
for (i = 0 ; i < 4 ; i ++)

p thread_create (& t i d s [i] , NULL, count , NULL) ;

for (i = 0 ; i < 4 ; i ++)

p th read _ jo in (t i d s [i] , NULL) ;

p r i n t f (" cn t=%u \ n " , cn t) ;

return 0;

}

What is the value of cnt?

[Bryant and O’Halloran. Computer Systems: A Programmer’s Perspective.
Prentice Hall, 2003.] © Prentice Hall. All rights reserved. This content is excluded from our Creative Commons license.

For more information, see http://ocw.mit.edu/fairuse.

6

http://ocw.mit.edu/fairuse

Race conditions in assembly

Ideally, should increment cnt 4 × 100000000 times, so
cnt = 400000000. However, running our code gives:

athena% ./race.o
cnt=137131900
athena% ./race.o
cnt=163688698
athena% ./race.o
cnt=163409296
athena% ./race.o
cnt=170865738
athena% ./race.o
cnt=169695163

So, what happened?
Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

7

1

1

Race conditions in assembly

•	 C not designed for multithreading
•	 No notion of atomic operations in C
•	 Increment cnt++; maps to three assembly operations:

1. load cnt into a register
2. increment value in register
3.	 save new register value as new cnt

•	 So what happens if thread interrupted in the middle?
Race condition! •

8

Race conditions in assembly

Let’s fix our code:
pthread_mutex_t mutex ;
unsigned i n t cnt = 0 ;

void ∗count (void ∗arg) { /∗ thread body ∗ /
i n t i ;
for (i = 0 ; i < 100000000; i ++) {

pthread_mutex_lock (&mutex) ;

cn t ++;

pthread_mutex_unlock (&mutex) ;

}
return NULL ;

}

i n t main (void) {
p thread_t t i d s [4] ;
i n t i ;
p th read_mutex_ in i t (&mutex , NULL) ;
for (i = 0 ; i < 4 ; i ++)

p thread_create (& t i d s [i] , NULL, count , NULL) ;
for (i = 0 ; i < 4 ; i ++)

p th read _ jo in (t i d s [i] , NULL) ;

pthread_mutex_destroy (&mutex) ;

p r i n t f (" cn t=%u \ n " , cn t) ;

return 0;

}

9

Race conditions

•	 Note that new code functions correctly, but is much slower
•	 C statements not atomic – threads may be interrupted at

assembly level, in the middle of a C statement
•	 Atomic operations like mutex locking must be specified as

atomic using special assembly instructions
•	 Ensure that all statements accessing/modifying shared

variables are synchronized

10

Semaphores

•	 Semaphore – special nonnegative integer variable s,
initially 1, which implements two atomic operations:

•	 P(s) – wait until s > 0, decrement s and return
•	 V(s) – increment s by 1, unblocking a waiting thread

•	 Mutex – locking calls P(s) and unlocking calls V(s)

•	 Implemented in <semaphore.h>, part of library rt, not
pthread

11

Using semaphores

•	 Initialize semaphore to value:
int sem_init(sem_t ∗sem, int pshared, unsigned int value);

•	 Destroy semaphore:
int sem_destroy(sem_t ∗sem);

•	 Wait to lock, blocking:
int sem_wait(sem_t ∗sem);

•	 Try to lock, returning immediately (0 if now locked, −1
otherwise):
int sem_trywait(sem_t ∗sem);

•	 Increment semaphore, unblocking a waiting thread:
int sem_post(sem_t ∗sem);

12

Producer and consumer revisited

•	 Use a semaphore to track available slots in shared buffer
•	 Use a semaphore to track items in shared buffer
•	 Use a semaphore/mutex to make buffer operations

synchronous

13

Producer and consumer revisited

#include < s t d i o . h> for (i = 0 ; i < ITEMS ; i ++) {

#include <pthread . h> sem_wait (& i tems) ;

#include <semaphore . h> sem_wait (&mutex) ;

p r i n t f (" consumed(%l d):%d \ n " ,
sem_t mutex , s l o t s , i tems ; p th read_se l f () , i +1) ;

sem_post (&mutex) ;
#define SLOTS 2 sem_post (& s l o t s) ;
#define ITEMS 10 }

return NULL;
void∗ produce (void∗ arg) }
{

i n t i ; i n t main ()

for (i = 0 ; i < ITEMS ; i ++) {

{ p thread_t tcons , t p ro ;

sem_wait (& s l o t s) ;

sem_wait (&mutex) ; sem_in i t (&mutex , 0 , 1) ;

p r i n t f (" produced(% l d):%d \ n " , sem_in i t (& s lo t s , 0 , SLOTS) ;

p th read_se l f () , i +1) ; sem_in i t (& items , 0 , 0) ;
sem_post (&mutex) ;
sem_post (& i tems) ; p thread_create (& tcons ,NULL, consume ,NULL) ;

} p thread_create (& tpro ,NULL, produce ,NULL) ;
return NULL; p th read_ jo in (tcons ,NULL) ;

} p th read_ jo in (tpro ,NULL) ;

void∗ consume (void∗ arg) sem_destroy (&mutex) ;
{ sem_destroy (& s l o t s) ;

i n t i ; sem_destroy (& i tems) ;
return 0;

}

[Bryant and O’Halloran. Computer Systems: A Programmer’s Perspective.
Prentice Hall, 2003.] © Prentice Hall. All rights reserved. This content is excluded from our Creative Commons license.

For more information, see http://ocw.mit.edu/fairuse. 14

http://ocw.mit.edu/fairuse

Other challenges

•	 Synchronization objects help solve race conditions
•	 Improper use can cause other problems

Some common issues: •

•	 thread safety and reentrant functions

deadlock
•
starvation •

15

Thread safety

•	 Function is thread safe if it always behaves correctly when
called from multiple concurrent threads

•	 Unsafe functions fal in several categories:
•	 accesses/modifies unsynchronized shared variables
•	 functions that maintain state using static variables – like
rand(), strtok()

•	 functions that return pointers to static memory – like
gethostbyname()

•	 functions that call unsafe functions may be unsafe

16

Reentrant functions

•	 Reentrant function – does not reference any shared data
when used by multiple threads

•	 All reentrant functions are thread-safe (are all thread-safe
functions reentrant?)

•	 Reentrant versions of many unsafe C standard library
functions exist:

Unsafe function
rand()

strtok()

asctime()

ctime()

gethostbyaddr()

gethostbyname()

inet_ntoa()

localtime()

Reentrant version

rand_r()
strtok_r()
asctime_r()
ctime_r()
gethostbyaddr_r()
gethostbyname_r()
(none)
localtime_r()

17

Thread safety

To make your code thread-safe:
• Use synchronization objects around shared variables

Use reentrant functions •

•	 Use synchronization around functions returning pointers to
shared memory (lock-and-copy):

1. lock mutex for function
2. call unsafe function
3. dynamically allocate memory for result; (deep) copy result

into new memory
4. unlock mutex

18

Deadlock

•	 Deadlock – happens when every thread is waiting on
another thread to unblock

•	 Usually caused by improper ordering of synchronization
objects

•	 Tricky bug to locate and reproduce, since
schedule-dependent

•	 Can visualize using a progress graph – traces progress of
threads in terms of synchronization objects

19

Deadlock

20

Figure removed due to copyright restrictions. Please see
http://csapp.cs.cmu.edu/public/1e/public/figures.html,
Figure 13.39, Progress graph for a program that can deadlock.

http://csapp.cs.cmu.edu/public/1e/public/figures.html

Deadlock

•	 Defeating deadlock extremely difficult in general
•	 When using only mutexes, can use the “mutex lock

ordering rule” to avoid deadlock scenarios:

A program is deadlock-free if, for each pair of mutexes (s, t)
in the program, each thread that uses both s and t
simultaneously locks them in the same order.

[Bryant and O’Halloran. Computer Systems: A Programmer’s Perspective

Prentice Hall, 2003.]

21

Starvation and priority inversion

Starvation similar to deadlock •

•	 Scheduler never allocates resources (e.g. CPU time) for a
thread to complete its task

•	 Happens during priority inversion
•	 example: highest priority thread T1 waiting for low priority

thread T2 to finish using a resource, while thread T3, which
has higher priority than T2, is allowed to run indefinitely

•	 thread T1 is considered to be in starvation

22

6.087 Lecture 13 – January 28, 2010

Review

Multithreaded Programming
Race Conditions
Semaphores
Thread Safety, Deadlock, and Starvation

Sockets and Asynchronous I/O
Sockets
Asynchronous I/O

23

Sockets

Socket – abstraction to enable communication across a •

network in a manner similar to file I/O
•	 Uses header <sys/socket.h> (extension of C standard

library)
•	 Network I/O, due to latency, usually implemented

asynchronously, using multithreading
•	 Sockets use client/server model of establishing

connections

23

Creating a socket

•	 Create a socket, getting the file descriptor for that socket:
int socket(int domain, int type, int protocol);

•	 domain – use constant AF_INET, so we’re using the
internet; might also use AF_INET6 for IPv6 addresses

•	 type – use constant SOCK_STREAM for connection-based
protocols like TCP/IP; use SOCK_DGRAM for connectionless
datagram protocols like UDP (we’ll concentrate on the
former)

•	 protocol – specify 0 to use default protocol for the socket
type (e.g. TCP)

•	 returns nonnegative integer for file descriptor, or −1 if
couldn’t create socket

•	 Don’t forget to close the file descriptor when you’re done!

24

Connecting to a server

•	 Using created socket, we connect to server using:
int connect(int fd , struct sockaddr ∗addr, int addr_len);

•	 fd – the socket’s file descriptor
•	 addr – the address and port of the server to connect to; for

internet addresses, cast data of type struct
sockaddr_in, which has the following members:

•	 sin_family – address family; always AF_INET
•	 sin_port – port in network byte order (use htons() to

convert to network byte order)
•	 sin_addr.s_addr – IP address in network byte order (use
htonl() to convert to network byte order)

•	 addr_len – size of sockaddr_in structure

returns 0 if successful
•

25

Associate server socket with a port

•	 Using created socket, we bind to the port using:
int bind(int fd , struct sockaddr ∗addr, int addr_len);

•	 fd, addr, addr_len – same as for connect()
note that address should be IP address of desired interface •
(e.g. eth0) on local machine

•	 ensure that port for server is not taken (or you may get
“address already in use” errors)

•	 return 0 if socket successfully bound to port

26

Listening for clients

•	 Using the bound socket, start listening:
int listen (int fd , int backlog);

•	 fd – bound socket file descriptor
•	 backlog – length of queue for pending TCP/IP

connections; normally set to a large number, like 1024
returns 0 if successful •

27

Accepting a client’s connection

•	 Wait for a client’s connection request (may already be
queued):
int accept(int fd , struct sockaddr ∗addr, int ∗addr_len);

•	 fd – socket’s file descriptor
•	 addr – pointer to structure to be filled with client address

info (can be NULL)
•	 addr_len – pointer to int that specifies length of structure

pointed to by addr; on output, specifies the length of the
stored address (stored address may be truncated if bigger
than supplied structure)

•	 returns (nonnegative) file descriptor for connected client
socket if successful

28

Reading and writing with sockets

•	 Send data using the following functions:
int write (int fd , const void ∗buf, size_t len);

int send(int fd , const void ∗buf, size_t len, int flags);

•	 Receive data using the following functions:
int read(int fd , void ∗buf, size_t len);

int recv(int fd , void ∗buf, size_t len, int flags);

•	 fd – socket’s file descriptor

buf – buffer of data to read or write
•

•	 len – length of buffer in bytes
•	 flags – special flags; we’ll just use 0
•	 all these return the number of bytes read/written (if

successful)

29

Asynchronous I/O

•	 Up to now, all I/O has been synchronous – functions do not
return until operation has been performed

•	 Multithreading allows us to read/write a file or socket
without blocking our main program code (just put I/O
functions in a separate thread)

•	 Multiplexed I/O – use select() or poll() with multiple
file descriptors

30

I/O multiplexing with select()

•	 To check if multiple files/sockets have data to
read/write/etc: (include <sys/select.h>)
int select(int nfds, fd_set ∗readfds, fd_set ∗writefds, fd_set ∗errorfds, struct timeval ∗timeout);

•	 nfds – specifies the total range of file descriptors to be
tested (0 up to nfds−1)

•	 readfds, writefds, errorfds – if not NULL, pointer to
set of file descriptors to be tested for being ready to read,
write, or having an error; on output, set will contain a list of
only those file descriptors that are ready

•	 timeout – if no file descriptors are ready immediately,
maximum time to wait for a file descriptor to be ready

•	 returns the total number of set file descriptor bits in all the
sets

•	 Note that select() is a blocking function

31

I/O multiplexing with select()

•	 fd_set – a mask for file descriptors; bits are set (“1”) if in
the set, or unset (“0”) otherwise

•	 Use the following functions to set up the structure:
•	 FD_ZERO(&fdset) – initialize the set to have bits unset for all file

descriptors
•	 FD_SET(fd, &fdset) – set the bit for file descriptor fd in the set
•	 FD_CLR(fd, &fdset) – clear the bit for file descriptor fd in the set
•	 FD_ISSET(fd, &fdset) – returns nonzero if bit for file descriptor fd is

set in the set

32

I/O multiplexing using poll()

•	 Similar to select(), but specifies file descriptors
differently: (include <poll.h>)
int poll (struct pollfd fds [], nfds_t nfds, int timeout);

•	 fds – an array of pollfd structures, whose members fd,
events, and revents, are the file descriptor, events to
check (OR-ed combination of flags like POLLIN, POLLOUT,
POLLERR, POLLHUP), and result of polling with that file
descriptor for those events, respectively

•	 nfds – number of structures in the array
•	 timeout – number of milliseconds to wait; use 0 to return

immediately, or −1 to block indefinitely

33

Summary

•	 Multithreaded programming
race conditions •

•	 semaphores
•	 thread safety

deadlock and starvation •

•	 Sockets, asynchronous I/O
•	 client/server socket functions
•	 select() and poll()

34

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIT OpenCourseWare
http://ocw.mit.edu

6.087 Practical Programming in C
January (IAP) 2010

For information about citing these materials or our Terms of Use,visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Review
	Multithreaded Programming
	Race Conditions
	Semaphores
	Thread Safety, Deadlock, and Starvation

	Sockets and Asynchronous I/O
	Sockets
	Asynchronous I/O

