Outline

@ Review

@ Multithreaded programming
e Concepts

@ Pthread
e API
e Mutex
e Condition variables

6.087 Lecture 12 — January 27, 2010

@ Review

Review: malloc()

Mapping memory: mmap () , munmap (). Useful for
demand paging.

Resizing heap: sbrk ()

Designing malloc ()
o implicit linked list,explicit linked list
e best fit,first fit,next fit

Problems:

o fragmentation
e memory leaks
¢ valgrind —tool=memcheck, checks for memory leaks.

Garbage collection

e C does not have any garbage collectors
¢ Implementations available
e Types:
¢ Mark and sweep garbage collector (depth first search)

e Cheney’s algorithm (breadth first search)
o Copying garbage collector

6.087 Lecture 12 — January 27, 2010

@ Multithreaded programming
e Concepts

Preliminaries: Parallel computing

e Parallelism: Multiple computations are done
simultaneously.

¢ Instruction level (pipelining)
e Data parallelism (SIMD)
o Task parallelism (embarrassingly parallel)
e Concurrency: Multiple computations that may be done in
parallel.

e Concurrency vs. Parallelism

Process vs. Threads

e Process: An instance of a program that is being executed
in its own address space. In POSIX systems, each
process maintains its own heap, stack, registers, file

descriptors etc.
Communication:

e Shared memory
o Network
¢ Pipes, Queues
e Thread: A light weight process that shares its address
space with others.In POSIX systems, each thread

maintains the bare essentials: registers, stack, signals.
Communication:

¢ shared address space.

Multithreaded concurrency

Serial execution:
¢ All our programs so far has had a single thread of
execution: main thread.
e Program exits when the main thread exits.

Multithreaded:
e Program is organized as multiple and concurrent threads
of execution.
e The main thread spawns multiple threads.
e The thread may communicate with one another.
¢ Advantages:
¢ Improves performance
¢ Improves responsiveness

o Improves utilization
¢ less overhead compared to multiple processes

Multithreaded programming

Even in C, multithread programming may be accomplished in
several ways

e Pthreads: POSIX C library.

e OpenMP

Intel threading building blocks
Cilk (from CSAIL!)

Grand central despatch
CUDA (GPU)

OpenCL (GPU/CPU)

Not all code can be made parallel

float params[10]; float params[10];
for(int i=0;i<10;i++) float prev=0;
do_something (params[i]); for(int i=0;i<10;i++)

{

prev=complicated (params[i],prev);

}

paralleizable not parallelizable

Not all multi-threaded code is safe

int balance=500;
void deposit(int sum){
int currbalance=balance;/«read balance =/

currbalance+=sum;
balance=currbalance;/«write balancex/

}

void withdraw (int sum){
int currbalance=balance;/xread balancex/
if (currbalance >0)
currbalance —=sum;
balance=currbalance; /+write balancex/
deposit (100);/«thread 1/
withdraw (50);/thread 2x/

withdraw (100);/x thread 3/

e minimize use of global/static memory
e Scenario: T1(read),T2(read,write), T1(write) ,balance=600
e Scenario: T2(read),T1(read,write),T2(write) ,balance=450

6.087 Lecture 12 — January 27, 2010

@ Pthread

e API

e Mutex

e Condition variables

Pthread

API:
¢ Thread management: creating, joining, attributes

pthread_

e Mutexes: create, destroy mutexes

pthread_mutex_

e Condition variables: create,destroy,wait,signal

pthread_cond_

e Synchronization: read/write locks and barriers

pthread_rwlock_, pthread_barrier_
® #include <pthread.h>

® gcc —Wall —00 —o <output> file.c —pthread (no —I prefix)

10

Creating threads

int pthread_create (pthread_t = thread,
const pthread_attr_t = attr,
void =(xstart_routine)(voidx), void x arg);

Default attributes are used if attr is NULL.
On success, stores the thread it into thread

calls function start_routine (arg) on a separate
thread of execution.

e returns zero on success, NoN-zero on error.
void pthread_exit(void +value_ptr);

¢ called implicitly when thread function exits.

e analogousto exit ().

creates a new thread with the attributes specified by attr.

11

Example

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5

void «PrintHello (void xthreadid)

long tid;
tid = (long)threadid;
printf("Hello World! It’s me, thread #%ld !\n", tid);
pthread_exit (NULL);
}

int main (int argc, char =xargv([])

pthread_t threads[NUM_THREADS];
int rc;
long t;
for(t=0; t<NUM_THREADS; t++){
printf("In main: creating thread %ld\n", t);
rc = pthread_create(&threads[t], NULL, PrintHello, (void x)t);

if (rc){
printf ("ERROR; return code from pthread_create() is %d\n", rc);
exit(—1);

}

}
pthread_exit (NULL);

© Lawrence Livermore National Laboratory. All rights reserved. This content is excluded from our Creative Commons license. For more il see hitp/ocw mit

code: https://computing.llnl.gov/tutorials/pthreads/

https://computing.llnl.gov/tutorials/pthreads/
http://ocw.mit.edu/fairuse

Output

In main: creating
In main: creating

Hello World!
Hello World!

It’s
It’s

In main: creating
In main: creating

Hello World!
Hello World!

It’s
It’s

In main: creating

Hello World!

It’s

thread 0
thread 1
me, thread
me, thread
thread 2
thread 3
me, thread
me, thread
thread 4
me, thread

#0!
#11

#21
#3!

#41

In main: creating

Hello World!

It’s

In main: creating

Hello World!

It’s

In main: creating

Hello World!

It’s

In main: creating

Hello World!

It’s

In main: creating

Hello World!

It’s

thread 0
me, thread
thread 1
me, thread
thread 2
me, thread
thread 3
me, thread
thread 4
me, thread

#0!

#2!

#3!

#41

13

Synchronization: joining

Master
—_ -
it pthread creata ()| pthzead_join(}| ——m

Worker l
Thread

DOWORK ——— pthread exit()|
Worker
Thread

F|gure: https://computing.llnl.gov/tutorials/pthreads

© Lawrence Livermore National Laboratory. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

int pthread_join(pthread_t thread, void xxvalue_ptr);

e otread_join() DlOCKS the calling thread until the specified thread
terminates.

e If vawe_prr iS NOt null, it will contain the return status of the
called thread

Other ways to synchronize: mutex,condition variables

I I I i I— Courtesy of Lawrence Livermore National Laboratory. Used with permission. 14

https://computing.llnl.gov/tutorials/pthreads
http://ocw.mit.edu/fairuse

Example

#define NELEMENTS 5000
#define BLK_SIZE 1000
#define NTHREADS (NELEMENTS/BLK_SIZE)

int main (int argc, char xargv[])

{
pthread_t thread [NUM THREADS];
pthread_attr_t attr;
int rc;long t; void =xstatus;
/% Initialize and set thread detached attribute =/
pthread_attr_init(&attr);
pthread_attr_setdetachstate (&attr , PTHREAD_CREATE_JOINABLE) ;
for(t=0; t<NUM THREADS; t++) {
printf("Main: creating thread %ld\n", t);
rc = pthread_create(&thread[t], &attr, work, (void =x)(txBLK_SIZE));
if (rc)
printf ("ERROR; return code from pthread_create () is %d\n", rc); exit(—1);
}
}

/« Free attribute and wait for the other threads =/
pthread_attr_destroy(&attr);
for(t=0; t<NUM THREADS; t++) {
rc = pthread_join(thread[t], &status);
if (rc) {
printf ("ERROR; return code from pthread_join () is %d\n", rc);exit(—1);
}

}

rintf ("Main: program mpleted. Exiting . \n"):

i

15

Mutex

e Mutex (mutual exclusion) acts as a "lock" protecting access
to the shared resource.

e Only one thread can "own" the mutex at a time. Threads
must take turns to lock the mutex.

int pthread_mutex_destroy (pthread_mutex_t xmutex);

int pthread_mutex_init(pthread_mutex_t * mutex,
const pthread_mutexattr_t = attr);

thread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

e pinread_mutex_init) iNitializes a mutex. If attributes are NULL,
default attributes are used.

e The macro rrHrean mutex INTIALIZER CAN be used to initialize
static mutexes.

® pthread_mutex_destroy() deStroyS the mutex.
e Both function return return 0 on success, non zero on error.

Mir 16

Mutex

int pthread_mutex_lock(pthread_mutex_t xmutex);
int pthread_mutex_trylock (pthread_mutex_t sxmutex);
int pthread_mutex_unlock (pthread_mutex_t xmutex);

® pthread_mutex_lock() locks the given mutex. If the mutex is IOCked,
the function is blocked until it becomes available.

e pthread_mutex_trylock() IS the non-blocking version. If the mutex is
currently locked the call will return immediately.

® pthread_mutex_unlock() unlocks the mutex.

Mir 17

Example revisited

int balance=500;
void deposit(int sum){
int currbalance=balance;/«read balancex/

currbalance+=sum;
balance=currbalance ;/+ write balance /

}

void withdraw (int sum){
int currbalance=balance;/«read balance =/
if (currbalance >0)
currbalance —=sum;
balance=currbalance; /«write balancex/
aéposit(100);/*thread 1%/
withdraw (50):/thread 2/

withdraw (100);/«thread 3/

e Scenario: T1(read),T2(read,write),T1(write),balance=600
e Scenario: T2(read),T1(read,write), T2(write),balance=450

18

Using mutex

int balance=500;
pthread_mutex_t mutexbalance=PTHREAD_MUTEX_INITIALIZER;

void deposit(int sum){
pthread_mutex_lock(&mutexbalance);

int currbalance=balance;/«read balance =/

currbalance+=sum;
balance=currbalance ;/xwrite balance x/

}

pthread_mutex_unlock(&mutexbalance);

void withdraw (int sum){
pthread_mutex_lock (&mutexbalance);

int currbalance=balance;/xread balancex/
if (currbalance >0)

currbalance —=sum;
balance=currbalance; /«write balancex/

}

pthread_mutex_unlock(&mutexbalance);

deposit(100);/«thread 1=/
withdraw (50);/thread 2x/
withdraw (100);/«thread 3=/

e Scenario: T1(read,write), T2(read,write),balance=550
e Scenario: T2(read),T1(read,write), T2(write).balance=550

Mir 19

Condition variables

Sometimes locking or unlocking is based on a run-time
condition (examples?).Without condition variables, program
would have to poll the variable/condition continuously.
Consumer:

(a) lock mutex on global item variable

(b) wait for (item>0) signal from producer (mutex unlocked
automatically).

(c) wake up when signalled (mutex locked again
automatically), unlock mutex and proceed.

Producer:

(1) produce something

(2) Lock global item variable, update item
(3) signal waiting (threads)

(4) unlock mutex

20

Condition variables

int pthread_cond_destroy (pthread_cond_t xcond);
int pthread_cond_init(pthread_cond_t * cond,const pthread_condattr_t = attr);
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_cond_int iNitialized the condition variable. If attr is NULL,
default attributes are sed.

pthread_cond_destroy() will destroy (Uninitia”ze) the condition
variable.

destroying a condition variable upon which other threads
are currently blocked results in undefined behavior.

Macro pTHREAD_COND_INITIALIZER CaN be used to initialize condition
variables. No error checks are performed.

Both function return 0 on success and non-zero otherwise.

21

Condition variables

int pthread_cond_destroy (pthread_cond_t xcond);
int pthread_cond_init(pthread_cond_t * cond,const pthread_condattr_t = attr);
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_cond_int iNitialized the condition variable. If attr is NULL,
default attributes are sed.

pthread_cond_destroy() will destroy (Uninitia”ze) the condition
variable.

destroying a condition variable upon which other threads
are currently blocked results in undefined behavior.

Macro pTHREAD_COND_INITIALIZER CaN be used to initialize condition
variables. No error checks are performed.

Both function return 0 on success and non-zero otherwise.

22

Condition variables

int pthread_cond_wait(pthread_cond_t xcond,pthread_mutex_t xmutex);
¢ blocks on a condition variable.

e must be called with the mutex already locked otherwise
behavior undefined.

¢ automatically releases mutex

e upon successful return, the mutex will be automatically
locked again.

int pthread_cond_broadcast(pthread_cond_t «xcond);

int pthread_cond_signal(pthread_cond_t xcond);

¢ unblocks threads waiting on a condition variable.

® pthread_cond_broadeast) UNIOCKS all threads that are waiting.

® pthread_cond_signal) UNlocks one of the threads that are waiting.
e both return 0 on success, non zero otherwise.

Mir 23

Example

FIRCIUde<pinread.n>

pthread_cond_t cond_recv=PTHREAD_COND_INITIALIZER;
pthread_cond_t cond_send=PTHREAD_COND_INITIALIZER;
pthread_mutex_t cond_mutex=PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t count_mutex=PTHREAD_MUTEX_INITIALIZER;

int full=0;
int count=0;

voidx produce (void) voidx consume (void x)
{
while (1) while (1)
pthread_mutex_lock(&cond_mutex); pthread_mutex_lock(&cond_mutex);
while (full) while (! full)
pthread_cond_wait(&cond_recv, pthread_cond_wait(&cond_send,
&cond_mutex) ; &cond_mutex);
} }
pthread_mutex_unlock(&cond_mutex); pthread_mutex_unlock(&cond_mutex);
pthread_mutex_lock(&count_mutex); pthread_mutex_lock(&count_mutex);
count++; full=1; full =0;
printf ("produced(%d):%d\n", printf ("consumed(%I!d):%d\n",
pthread_self(),count); pthread_self(),count);
pthread_cond_broadcast(&cond_send); pthread_cond_broadcast(&cond_recv);
pthread_mutex_unlock(&count_mutex); pthread_mutex_unlock(&count_mutex);
if (count>=10) break; if (count>=10)break;
} }
I -
Mii 24

Example

int main()

{
pthread_t cons_thread, prod_thread;
pthread_create (&prod_thread ,NULL, produce ,NULL);
pthread_create (&cons_thread ,NULL, consume ,NULL);

pthread_join(cons_thread ,NULL);
pthread_join (prod_thread ,NULL);
return 0;

)
Output:

produced(3077516144):1
consumed(3069123440):1
produced(3077516144):2
consumed(3069123440):2
produced(3077516144):3
consumed(3069123440):3
produced(3077516144):4
consumed(3069123440):4
produced(3077516144):5
consumed(3069123440):5
produced(3077516144):6
consumed(3069123440):6
produced(3077516144):7
consumed(3069123440):7

Summary

Parallel programming concepts
Multithreaded programming
Pthreads

Syncrhonization

Mutex

Condition variables

26

MIT OpenCourseWare
http://ocw.mit.edu

6.087 Practical Programming in C
January (IAP) 2010

For information about citing these materials or our Terms of Use,visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Review
	Multithreaded programming
	Concepts

	Pthread
	API
	Mutex
	Condition variables

