
6.087 Lecture 11 – January 26, 2010

Review

Dynamic Memory Allocation
Designing the malloc() Function
A Simple Implementation of malloc()
A Real-World Implementation of malloc()

Using malloc()
Using valgrind

Garbage Collection

1

Review: C standard library

•	 I/O functions: fopen(), freopen(), fflush(),
remove(), rename(), tmpfile(), tmpnam(),
fread(), fwrite(), fseek(), ftell(), rewind(),
clearerr(), feof(), ferror()

•	 Character testing functions: isalpha(), isdigit(),
isalnum(), iscntrl(), islower(), isprint(),
ispunct(), isspace(), isupper()

•	 Memory functions: memcpy(), memmove(), memcmp(),
memset()

1

Review: C standard library

•	 Conversion functions: atoi(), atol(), atof(),
strtol(), strtoul(), strtod()

•	 Utility functions: rand(), srand(), abort(), exit(),
atexit(), system(), bsearch(), qsort()

•	 Diagnostics: assert() function, __FILE__, __LINE__
macros

2

Review: C standard library

•	 Variable argument lists:
•	 Declaration with ... for variable argument list (may be of

any type):
int printf (const char ∗ fmt, ...);

•	 Access using data structure va_list ap, initialized using
va_start(), accessed using va_arg(), destroyed at
end using va_end()

•	 Time functions: clock(), time(), difftime(),
mktime(), asctime(), localtime(), ctime(),
strftime()

3

6.087 Lecture 11 – January 26, 2010

Review

Dynamic Memory Allocation
Designing the malloc() Function
A Simple Implementation of malloc()
A Real-World Implementation of malloc()

Using malloc()
Using valgrind

Garbage Collection

4

Dynamic memory allocation

•	 Memory allocated during runtime
•	 Request to map memory using mmap() function (in
<sys/mman.h>)

•	 Virtual memory can be returned to OS using munmap()
•	 Virtual memory either backed by a file/device or by

demand-zero memory:

all bits initialized to zero
•
not stored on disk •

•	 used for stack, heap, uninitialized (at compile time) globals

4

Mapping memory

•	 Mapping memory:

void	 ∗mmap(void ∗ s t a r t , s i z e _ t length , i n t prot ,
i n t f l ags , i n t fd , o f f _ t o f f s e t) ;

•	 asks OS to map virtual memory of specified length, using
specified physical memory (file or demand-zero)

•	 fd is file descriptor (integer referring to a file, not a file
stream) for physical memory (i.e. file) to load into memory

•	 for demand-zero, including the heap, use MMAP_ANON flag
•	 start – suggested starting address of mapped memory,

usually NULL

•	 Unmap memory:
int munmap(void ∗start, size_t length);

5

The heap

•	 Heap – private section of virtual memory (demand-zero)
used for dynamic allocation

•	 Starts empty, zero-sized
•	 brk – OS pointer to top of heap, moves upwards as heap

grows
•	 To resize heap, can use sbrk() function:

void ∗sbrk(int inc); /∗ returns old value of brk_ptr ∗/

•	 Functions like malloc() and new (in C++) manage heap,
mapping memory as needed

•	 Dynamic memory allocators divide heap into blocks

6

Requirements

• Must be able to allocate, free memory in any order
• Auxiliary data structure must be on heap
• Allocated memory cannot be moved
• Attempt to minimize fragmentation

7

Fragmentation

•	 Two types – internal and external
•	 Internal – block size larger than allocated variable in block
•	 External – free blocks spread out on heap
•	 Minimize external fragmentation by preferring fewer larger

free blocks

8

Design choices

Data structure to track blocks •

• Algorithm for positioning a new allocation
• Splitting/joining free blocks

9

Tracking blocks

•	 Implicit free list: no data structure required
•	 Explicit free list: heap divided into fixed-size blocks;

maintain a linked list of free blocks
•	 allocating memory: remove allocated block from list
•	 freeing memory: add block back to free list

Linked list iteration in linear time •

•	 Segregated free list: multiple linked lists for blocks of
different sizes

•	 Explicit lists stored within blocks (pointers in payload
section of free blocks)

10

Block structures

11

Figure removed due to copyright restrictions. Please see
http://csapp.cs.cmu.edu/public/1e/public/figures.html,
Figure 10.37, Format of a simple heap block.

http://csapp.cs.cmu.edu/public/1e/public/figures.html

Block structures

12

Figure removed due to copyright restrictions. Please see
http://csapp.cs.cmu.edu/public/1e/public/figures.html,
Figure 10.50, Format of heap blocks that use doubly-linked free lists.

http://csapp.cs.cmu.edu/public/1e/public/figures.html

Positioning allocations

•	 Block must be large enough for allocation
•	 First fit: start at beginning of list, use first block
•	 Next fit: start at end of last search, use next block
•	 Best fit: examines entire free list, uses smallest block
•	 First fit and next fit can fragment beginning of heap, but

relatively fast
•	 Best fit can have best memory utilization, but at cost of

examining entire list

13

Splitting and joining blocks

•	 At allocation, can use entire free block, or part of it, splitting
the block in two

•	 Splitting reduces internal fragmentation, but more
complicated to implement

•	 Similarly, can join adjacent free blocks during (or after)
freeing to reduce external fragmentation

•	 To join (coalesce) blocks, need to know address of
adjacent blocks

•	 Footer with pointer to head of block – enable successive
block to find address of previous block

14

A simple memory allocator

•	 Code in Computer Systems: A Programmer’s Perspective

•	 Payload 8 byte alignment; 16 byte minimum block size
•	 Implicit free list
•	 Coalescence with boundary tags; only split if remaining

block space ≥ 16 bytes

15

Figure removed due to copyright restrictions. Please see
http://csapp.cs.cmu.edu/public/1e/public/figures.html,
Figure 10.44, Invariant form of the implicit free list.

http://csapp.cs.cmu.edu/public/1e/public/figures.html

Initialization

1. Allocate 16 bytes for padding, prologue, epilogue
2. Insert 4 byte padding and prologue block (header + footer

only, no payload) at beginning
3. Add an epilogue block (header only, no payload)
4. Insert a new free chunk (extend the heap)

16

Allocating data

1. Compute total block size (header+payload+footer)
2. Locate free block large enough to hold data (using first or

next fit for speed)
3. If block found, add data to block and split if padding ≥ 16

bytes
4. Otherwise, insert a new free chunk (extending the heap),

and add data to that
5. If could not add large enough free chunk, out of memory

17

Freeing data

1. Mark block as free (bit flag in header/footer)
2. If previous block free, coalesce with previous block (update

size of previous)
3. If next block free, coalesce with next block (update size)

18

Explicit free list

•	 Maintain pointer to head, tail of free list (not in address
order)

•	 When freeing, add free block to end of list; set pointer to
next, previous block in free list at beginning of payload
section of block

•	 When allocating, iterate through free list, remove from list
when allocating block

•	 For segregated free lists, allocator maintains array of lists
for different sized free blocks

19

malloc() for the real world

•	 Used in GNU libc version of malloc()

•	 Details have changed, but nice general discussion can be
found at
http://g.oswego.edu/dl/html/malloc.html

•	 Chunks implemented as in segregated free list, with
pointers to previous/next chunks in free list in payload of
free blocks

•	 Lists segregated into bins according to size; bin sizes
spaced logarithmically
Placement done in best-fit order •

•	 Deferred coalescing and splitting performed to minimize
overhead

20

http://g.oswego.edu/dl/html/malloc.html

6.087 Lecture 11 – January 26, 2010

Review

Dynamic Memory Allocation
Designing the malloc() Function
A Simple Implementation of malloc()
A Real-World Implementation of malloc()

Using malloc()
Using valgrind

Garbage Collection

21

Using malloc()

•	 Minimize overhead – use fewer, larger allocations
•	 Minimize fragmentation – reuse memory allocations as

much as possible
•	 Growing memory – using realloc() can reduce

fragmentation
•	 Repeated allocation and freeing of variables can lead to

poor performance from unnecessary splitting/coalescing
(depending on implementation of malloc())

21

Using valgrind to detect memory leaks

•	 A simple tutorial: http://cs.ecs.baylor.edu/
~donahoo/tools/valgrind/

•	 valgrind program provides several performance tools,
including memcheck:

athena% valgrind --tool=memcheck

--leak-check=yes program.o

•	 memcheck runs program using virtual machine and tracks
memory leaks

•	 Does not trigger on out-of-bounds index errors for arrays
on the stack

Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

22

1

1

http://cs.ecs.baylor.edu/~donahoo/tools/valgrind/
http://cs.ecs.baylor.edu/~donahoo/tools/valgrind/

Other valgrind tools

•	 Can use to profile code to measure memory usage,
identify execution bottlenecks

•	 valgrind tools (use name in -tool= flag):
•	 cachegrind – counts cache misses for each line of code
•	 callgrind – counts function calls and costs in program
•	 massif – tracks overall heap usage

23

6.087 Lecture 11 – January 26, 2010

Review

Dynamic Memory Allocation
Designing the malloc() Function
A Simple Implementation of malloc()
A Real-World Implementation of malloc()

Using malloc()
Using valgrind

Garbage Collection

24

• Pointer(s) to memory no longer exist
• Tricky when pointers on heap or references are circular

(think of circular linked lists)
• Pointers can be masked as data in memory; garbage

collector may free data that is still referenced (or not free
unreferenced data)

Garbage collection

•	 C implements no garbage collector
•	 Memory not freed remains in virtual memory until program

terminates
•	 Other languages like Java implement garbage collectors to

free unreferenced memory
•	 When is memory unreferenced?

24

Garbage collection

•	 C implements no garbage collector
•	 Memory not freed remains in virtual memory until program

terminates
•	 Other languages like Java implement garbage collectors to

free unreferenced memory
•	 When is memory unreferenced?

•	 Pointer(s) to memory no longer exist
•	 Tricky when pointers on heap or references are circular

(think of circular linked lists)
•	 Pointers can be masked as data in memory; garbage

collector may free data that is still referenced (or not free
unreferenced data)

24

Garbage collection and memory allocation

•	 Program relies on garbage collector to free memory
•	 Garbage collector calls free()

•	 malloc() may call garbage collector if memory allocation
above a threshold

25

Figure removed due to copyright restrictions. Please see
http://csapp.cs.cmu.edu/public/1e/public/figures.html,
Figure 10.52, Integrating a conservative garbage collector and a C malloc package.

http://csapp.cs.cmu.edu/public/1e/public/figures.html

Mark and sweep garbage collector

•	 Simple tracing garbage collector
•	 Starts with list of known in-use memory (e.g. the stack)
•	 Mark: trace all pointers, marking data on the heap as it

goes
•	 Sweep: traverse entire heap, freeing unmarked data
•	 Requires two complete traversals of memory, takes a lot of

time
•	 Implementation available at http:
//www.hpl.hp.com/personal/Hans_Boehm/gc/

26

http://www.hpl.hp.com/personal/Hans_Boehm/gc/
http://www.hpl.hp.com/personal/Hans_Boehm/gc/

Mark and sweep garbage collector

27

Figure removed due to copyright restrictions. Please see
http://csapp.cs.cmu.edu/public/1e/public/figures.html,
Figure 10.51, A garbage collector's view of memory as a directed graph.

http://csapp.cs.cmu.edu/public/1e/public/figures.html

Mark and sweep garbage collector

28

Figure removed due to copyright restrictions. Please see
http://csapp.cs.cmu.edu/public/1e/public/figures.html,
Figure 10.54, Mark and sweep example.

http://csapp.cs.cmu.edu/public/1e/public/figures.html

Copying garbage collector

•	 Uses a duplicate heap; copies live objects during traversal
to the duplicate heap (the to-space)

•	 Updates pointers to point to new object locations in
duplicate heap

•	 After copying phase, entire old heap (the from-space) is
freed

•	 Code can only use half the heap

29

Cheney’s (not Dick’s) algorithm

•	 Method for copying garbage collector using
breadth-first-search of memory graph

•	 Start with empty to-space
•	 Examine stack; move pointers to to-space and update

pointers to to-space references
•	 Items in from-space replaced with pointers to copy in

to-space
•	 Starting at beginning of to-space, iterate through memory,

doing the same as pointers are encountered
•	 Can accomplish in one pass

30

Summary

Topics covered:
• Dynamic memory allocation

•	 the heap
•	 designing a memory allocator

a real world allocator •

•	 Using malloc()

•	 Using valgrind
•	 Garbage collection

•	 mark-and-sweep collector
•	 copying collector

31

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIT OpenCourseWare
http://ocw.mit.edu

6.087 Practical Programming in C
January (IAP) 2010

For information about citing these materials or our Terms of Use,visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Review
	Dynamic Memory Allocation
	Designing the malloc() Function
	A Simple Implementation of malloc()
	A Real-World Implementation of malloc()

	Using malloc()
	Using valgrind

	Garbage Collection

