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Review: C standard library


•	 I/O functions: fopen(), freopen(), fflush(), 
remove(), rename(), tmpfile(), tmpnam(), 
fread(), fwrite(), fseek(), ftell(), rewind(), 
clearerr(), feof(), ferror() 

•	 Character testing functions: isalpha(), isdigit(), 
isalnum(), iscntrl(), islower(), isprint(), 
ispunct(), isspace(), isupper() 

•	 Memory functions: memcpy(), memmove(), memcmp(), 
memset() 
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Review: C standard library


•	 Conversion functions: atoi(), atol(), atof(), 
strtol(), strtoul(), strtod() 

•	 Utility functions: rand(), srand(), abort(), exit(), 
atexit(), system(), bsearch(), qsort() 

•	 Diagnostics: assert() function, __FILE__, __LINE__ 
macros 
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Review: C standard library


•	 Variable argument lists: 
•	 Declaration with ... for variable argument list (may be of 

any type): 
int printf (const char ∗ fmt, ...); 

•	 Access using data structure va_list ap, initialized using 
va_start(), accessed using va_arg(), destroyed at 
end using va_end() 

•	 Time functions: clock(), time(), difftime(), 
mktime(), asctime(), localtime(), ctime(), 
strftime() 
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Dynamic memory allocation


•	 Memory allocated during runtime 
•	 Request to map memory using mmap() function (in 
<sys/mman.h>) 

•	 Virtual memory can be returned to OS using munmap() 
•	 Virtual memory either backed by a file/device or by 

demand-zero memory:

all bits initialized to zero
• 
not stored on disk • 

•	 used for stack, heap, uninitialized (at compile time) globals 
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Mapping memory


•	 Mapping memory: 

void	 ∗mmap( void ∗ s t a r t , s i z e _ t length , i n t prot , 
i n t f l ags , i n t fd , o f f _ t o f f s e t ) ; 

•	 asks OS to map virtual memory of specified length, using 
specified physical memory (file or demand-zero) 

•	 fd is file descriptor (integer referring to a file, not a file 
stream) for physical memory (i.e. file) to load into memory 

•	 for demand-zero, including the heap, use MMAP_ANON flag 
•	 start – suggested starting address of mapped memory, 

usually NULL 

•	 Unmap memory: 
int munmap(void ∗start, size_t length); 
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The heap


•	 Heap – private section of virtual memory (demand-zero) 
used for dynamic allocation 

•	 Starts empty, zero-sized 
•	 brk – OS pointer to top of heap, moves upwards as heap 

grows 
•	 To resize heap, can use sbrk() function: 

void ∗sbrk(int inc ); /∗ returns old value of brk_ptr ∗/ 

•	 Functions like malloc() and new (in C++) manage heap, 
mapping memory as needed 

•	 Dynamic memory allocators divide heap into blocks 
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Requirements


• Must be able to allocate, free memory in any order 
• Auxiliary data structure must be on heap 
• Allocated memory cannot be moved 
• Attempt to minimize fragmentation 
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Fragmentation


•	 Two types – internal and external 
•	 Internal – block size larger than allocated variable in block 
•	 External – free blocks spread out on heap 
•	 Minimize external fragmentation by preferring fewer larger 

free blocks 
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Design choices


Data structure to track blocks • 

• Algorithm for positioning a new allocation 
• Splitting/joining free blocks 
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Tracking blocks


•	 Implicit free list: no data structure required 
•	 Explicit free list: heap divided into fixed-size blocks; 

maintain a linked list of free blocks 
•	 allocating memory: remove allocated block from list 
•	 freeing memory: add block back to free list 

Linked list iteration in linear time • 

•	 Segregated free list: multiple linked lists for blocks of 
different sizes 

•	 Explicit lists stored within blocks (pointers in payload 
section of free blocks) 
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Block structures
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Figure removed due to copyright restrictions. Please see 
http://csapp.cs.cmu.edu/public/1e/public/figures.html,
Figure 10.37, Format of a simple heap block.

http://csapp.cs.cmu.edu/public/1e/public/figures.html


Block structures
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Figure removed due to copyright restrictions. Please see
http://csapp.cs.cmu.edu/public/1e/public/figures.html,
Figure 10.50, Format of heap blocks that use doubly-linked free lists.

http://csapp.cs.cmu.edu/public/1e/public/figures.html


Positioning allocations


•	 Block must be large enough for allocation 
•	 First fit: start at beginning of list, use first block 
•	 Next fit: start at end of last search, use next block 
•	 Best fit: examines entire free list, uses smallest block 
•	 First fit and next fit can fragment beginning of heap, but 

relatively fast 
•	 Best fit can have best memory utilization, but at cost of 

examining entire list 
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Splitting and joining blocks


•	 At allocation, can use entire free block, or part of it, splitting 
the block in two 

•	 Splitting reduces internal fragmentation, but more 
complicated to implement 

•	 Similarly, can join adjacent free blocks during (or after) 
freeing to reduce external fragmentation 

•	 To join (coalesce) blocks, need to know address of 
adjacent blocks 

•	 Footer with pointer to head of block – enable successive 
block to find address of previous block 
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A simple memory allocator


•	 Code in Computer Systems: A Programmer’s Perspective 

•	 Payload 8 byte alignment; 16 byte minimum block size 
•	 Implicit free list 
•	 Coalescence with boundary tags; only split if remaining 

block space ≥ 16 bytes 
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Figure removed due to copyright restrictions. Please see
http://csapp.cs.cmu.edu/public/1e/public/figures.html,
Figure 10.44, Invariant form of the implicit free list.

http://csapp.cs.cmu.edu/public/1e/public/figures.html


Initialization


1. Allocate 16 bytes for padding, prologue, epilogue 
2. Insert 4 byte padding and prologue block (header + footer 

only, no payload) at beginning 
3. Add an epilogue block (header only, no payload) 
4. Insert a new free chunk (extend the heap) 
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Allocating data


1. Compute total block size (header+payload+footer) 
2. Locate free block large enough to hold data (using first or 

next fit for speed) 
3. If block found, add data to block and split if padding ≥ 16 

bytes 
4. Otherwise, insert a new free chunk (extending the heap), 

and add data to that 
5. If could not add large enough free chunk, out of memory 
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Freeing data


1. Mark block as free (bit flag in header/footer) 
2. If previous block free, coalesce with previous block (update 

size of previous) 
3. If next block free, coalesce with next block (update size) 
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Explicit free list


•	 Maintain pointer to head, tail of free list (not in address 
order) 

•	 When freeing, add free block to end of list; set pointer to 
next, previous block in free list at beginning of payload 
section of block 

•	 When allocating, iterate through free list, remove from list 
when allocating block 

•	 For segregated free lists, allocator maintains array of lists 
for different sized free blocks 
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malloc() for the real world


•	 Used in GNU libc version of malloc() 

•	 Details have changed, but nice general discussion can be 
found at 
http://g.oswego.edu/dl/html/malloc.html 

•	 Chunks implemented as in segregated free list, with 
pointers to previous/next chunks in free list in payload of 
free blocks 

•	 Lists segregated into bins according to size; bin sizes 
spaced logarithmically 
Placement done in best-fit order • 

•	 Deferred coalescing and splitting performed to minimize 
overhead 
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Using malloc()


•	 Minimize overhead – use fewer, larger allocations 
•	 Minimize fragmentation – reuse memory allocations as 

much as possible 
•	 Growing memory – using realloc() can reduce 

fragmentation 
•	 Repeated allocation and freeing of variables can lead to 

poor performance from unnecessary splitting/coalescing 
(depending on implementation of malloc()) 
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Using valgrind to detect memory leaks


•	 A simple tutorial: http://cs.ecs.baylor.edu/ 
~donahoo/tools/valgrind/ 

•	 valgrind program provides several performance tools, 
including memcheck: 

athena% valgrind --tool=memcheck

--leak-check=yes program.o


•	 memcheck runs program using virtual machine and tracks 
memory leaks 

•	 Does not trigger on out-of-bounds index errors for arrays 
on the stack 

Athena is MIT's UNIX-based computing environment. OCW does not provide access to it. 
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http://cs.ecs.baylor.edu/~donahoo/tools/valgrind/


Other valgrind tools


•	 Can use to profile code to measure memory usage, 
identify execution bottlenecks 

•	 valgrind tools (use name in -tool= flag): 
•	 cachegrind – counts cache misses for each line of code 
•	 callgrind – counts function calls and costs in program 
•	 massif – tracks overall heap usage 
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• Pointer(s) to memory no longer exist
• Tricky when pointers on heap or references are circular

(think of circular linked lists)
• Pointers can be masked as data in memory; garbage

collector may free data that is still referenced (or not free
unreferenced data)

Garbage collection


•	 C implements no garbage collector 
•	 Memory not freed remains in virtual memory until program 

terminates 
•	 Other languages like Java implement garbage collectors to 

free unreferenced memory 
•	 When is memory unreferenced? 
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Garbage collection and memory allocation


•	 Program relies on garbage collector to free memory 
•	 Garbage collector calls free() 

•	 malloc() may call garbage collector if memory allocation 
above a threshold 
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Figure removed due to copyright restrictions. Please see
http://csapp.cs.cmu.edu/public/1e/public/figures.html,
Figure 10.52, Integrating a conservative garbage collector and a C malloc package.

http://csapp.cs.cmu.edu/public/1e/public/figures.html


Mark and sweep garbage collector


•	 Simple tracing garbage collector 
•	 Starts with list of known in-use memory (e.g. the stack) 
•	 Mark: trace all pointers, marking data on the heap as it 

goes 
•	 Sweep: traverse entire heap, freeing unmarked data 
•	 Requires two complete traversals of memory, takes a lot of 

time 
•	 Implementation available at http: 
//www.hpl.hp.com/personal/Hans_Boehm/gc/ 
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Mark and sweep garbage collector
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Figure removed due to copyright restrictions. Please see
http://csapp.cs.cmu.edu/public/1e/public/figures.html,
Figure 10.51, A garbage collector's view of memory as a directed graph.

http://csapp.cs.cmu.edu/public/1e/public/figures.html


Mark and sweep garbage collector
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Figure removed due to copyright restrictions. Please see
http://csapp.cs.cmu.edu/public/1e/public/figures.html,
Figure 10.54, Mark and sweep example.

http://csapp.cs.cmu.edu/public/1e/public/figures.html


Copying garbage collector


•	 Uses a duplicate heap; copies live objects during traversal 
to the duplicate heap (the to-space) 

•	 Updates pointers to point to new object locations in 
duplicate heap 

•	 After copying phase, entire old heap (the from-space) is 
freed 

•	 Code can only use half the heap 
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Cheney’s (not Dick’s) algorithm


•	 Method for copying garbage collector using 
breadth-first-search of memory graph 

•	 Start with empty to-space 
•	 Examine stack; move pointers to to-space and update 

pointers to to-space references 
•	 Items in from-space replaced with pointers to copy in 

to-space 
•	 Starting at beginning of to-space, iterate through memory, 

doing the same as pointers are encountered 
•	 Can accomplish in one pass 
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Summary


Topics covered: 
• Dynamic memory allocation 

•	 the heap 
•	 designing a memory allocator 

a real world allocator • 

•	 Using malloc() 

•	 Using valgrind 
•	 Garbage collection 

•	 mark-and-sweep collector 
•	 copying collector 
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