6.087 Lecture 7 — January 20, 2010

@ Review

Review: Compound data types

e struct - structure containing one or multiple fields, each with
its own type (or compound type)
e size is combined size of all the fields, padded for byte
alignment
e anonymous or named
e union - structure containing one of several fields, each with
its own type (or compound type)
e size is size of largest field
e anonymous or named
¢ Bit fields - structure fields with width in bits

¢ aligned and ordered in architecture-dependent manner
e can result in inefficient code

Review: Compound data types

e Consider this compound data structure:

struct foo {
short s;
union {
int i;
char c;
}ous
unsigned int flag_s : 1;
unsigned int flag_u : 2;
unsigned int bar;

e Assuming a 32-bit x86 processor, evaluate
sizeof(struct foo)

Review: Compound data types

e Consider this compound data structure:

struct foo {

short s; <+ 2 bytes

union { +— 4 bytes,
int i; 4 byte-aligned
char c;

bous

unsigned int flag_s : 1; + bit fields

unsigned int flag_u : 2;

unsigned int bar; < 4 bytes,

| 4 byte-aligned

e Assuming a 32-bit x86 processor, evaluate
sizeof(struct foo)

Review: Compound data types

e How can we rearrange the fields to minimize the size of
struct foo?

Review: Compound data types

e How can we rearrange the fields to minimize the size of
struct foo?

o Answer: order from largest to smallest:

struct foo {
union {
int i;
char c;
}ous
unsigned int bar;
short s;
unsigned int flag_s : 1;
unsigned int flag_u : 2;

}s

sizeof(struct foo) = 12

Review: Linked lists and trees

Linked list and tree dynamically grow as data is
added/removed

Node in list or tree usually implemented as a struct

Usemalloc (), free (), etc. to allocate/free memory
dynamically

Unlike arrays, do not provide fast random access by index
(need to iterate)

6.087 Lecture 7 — January 20, 2010

@ More about Pointers
e Pointers to Pointers
e Pointer Arrays
e Multidimensional Arrays

Pointer review

Pointer represents address to variable in memory
Examples:

int xpn; — pointer to int

struct div_t = pdiv; — pointer to structure div_t

Addressing and indirection:

double pi = 3.14159;
double xppi = π
printf ("pi = %g\n", xppi);

Today: pointers to pointers, arrays of pointers,
multidimensional arrays

Pointers to pointers

¢ Address stored by pointer also data in memory
e Can address location of address in memory — pointer to

that pointer

int n = 3;
int «xpn = &n; /% pointer to n x/
int xxppn = &pn; /x pointer to address of n x/

e Many uses in C: pointer arrays, string arrays

Pointer pointers example

e What does this function do?

void swap(int xxa, int xxb) {
int «xtemp = xa;
*a xb;
*b temp;

}

Pointer pointers example

e What does this function do?

void swap(int xxa, int xxb) {
int «xtemp = xa;
*a xb;
*b temp;

}

e How does it compare to the familiar version of swap?

void swap(int xa, int xb) {
int temp = xa;
*a *b;
*b temp;

1

Pointer arrays

¢ Pointer array — array of pointers
int xarr[20]; — an array of pointers to int’s
char xarr[10]; — an array of pointers to char’s

¢ Pointers in array can point to arrays themselves
char xstrs[10]; — an array of char arrays (or strings)

Pointer array example

Have an array int arr[100]; that contains some numbers
Want to have a sorted version of the array, but not modify
arr

Can declare a pointer array int * sorted_array[100]; containing
pointers to elements of arr and sort the pointers instead
of the numbers themselves

Good approach for sorting arrays whose elements are very
large (like strings)

Pointer array example

Insertion sort:

/+ move previous elements down until
insertion point reached =/
void shift_element(unsigned int i) {
int xpvalue;
/« guard against going outside array =x/
for (pvalue = sorted_array[i]; i &&
xsorted_array[i—1] > xpvalue; i—) {
/« move pointer down =/
sorted_array[i] = sorted_array[i—1];
}

sorted_array[i] = pvalue; /x insert pointer

x/

10

Pointer array example

Insertion sort (continued):

/* iterate until out—of—order element found;
shift the element, and continue iterating =/
void insertion_sort(void) {
unsigned int i, len = array_length(arr);
for (i = 1; i < len; i++)
if (xsorted_array[i] < *sorted_array[i—1])
shift_element(i);

11

String arrays

¢ An array of strings, each stored as a pointer to an array of
chars

¢ Each string may be of different length

char stri[] "hello"; /x length = 6 =/
char str2[] "goodbye"; /x length = 8 x/
char str3[] "ciao"; /x length = 5 x/

char « strArray[] = {str1, str2, str3};

¢ Note that strArray contains only pointers, not the characters

themselves!

12

Multidimensional arrays

e C also permits multidimensional arrays specified using []
brackets notation:
int world[20][30]; is a 20x30 2-D array of int’s

¢ Higher dimensions possible:
char bigcharmatrix [15][7][35][4]; — what are the dimensions of
this?

¢ Multidimensional arrays are rectangular; pointer arrays can
be arbitrary shaped

Mir 13

6.087 Lecture 7 — January 20, 2010

@ Data Structures
e Stacks
e Queues
e Application: Calculator

14

More data structures

¢ Last time: linked lists
¢ Today: stack, queue
e Can be implemented using linked list or array storage

14

The stack

e Special type of list - last element in (push) is first out (pop)
e Read and write from same end of list

e The stack (where local variables are stored) is
implemented as a *gasp* stack

15

Stack as array

e Store as array buffer (static allocation or dynamic
allocation):
int stack_buffer[100];

¢ Elements added and removed from end of array; need to
track end:
int itop = 0; /x end at zero => initialized for empty stack */

16

Stack as array

e Add element using void push(int);

void push(int elem) {
stack_buffer[itop++] = elem;

}

¢ Remove element using int pop(void);

int pop(void) {
if (itop > 0)
return stack_buffer[——itop];
else
return 0; /« or other special value x/

}

e Some implementations provide int top(void); to read last
(top) element without removing it

17

Stack as linked list

e Store as linked list (dynamic allocation):

struct s_listnode {
int element;
struct s_listnode * pnext;

b
struct s_listnode * stack_buffer = NULL; — start empty
e “Top” is now at front of linked list (no need to track)

Mir 18

Stack as linked list

Add element using void push(int);

void push(int elem) {

struct s_listnode xnew_node = /x allocate new node x/
(struct s_listnode x)malloc(sizeof(struct s_listnode))

new_node—>pnext = stack_buffer;
new_node—>element = elem;
stack_buffer = new_node;

}

Adding an element pushes back the rest of the stack

19

Stack as linked list

Remove element using int pop(void);

int pop(void) {

}

(stack_buffer) {

struct s_listnode xpelem = stack_buffer;
int elem = stack_buffer—>element;
stack_buffer = pelem—>pnext;

free (pelem); /« remove node from memory x/
return elem;

else

return 0; /x or other special value =x/

Some implementations provide int top(void); to read last
(top) element without removing it

20

The queue

Opposite of stack - first in (enqueue), first out (dequeue)
Read and write from opposite ends of list

Important for Uls (event/message queues), networking (TX,
Rx packet queues)

Imposes an ordering on elements

21

Queue as array

e Again, store as array buffer (static or dynamic allocation);
float queue_buffer[100];

e Elements added to end (rear), removed from beginning
(front)

¢ Need to keep track of front and rear:
int ifront =0, irear = 0;

e Alternatively, we can track the front and number of
elements:
int ifront =0, icount = 0;

o We’ll use the second way (reason apparent later)

Mir 22

Queue as array

¢ Add element using void enqueue(float);

void enqueue(float elem) {
if (icount < 100) {
queue_buffer[ifront+icount] = elem;
icount++;
}
}

¢ Remove element using float dequeue(void);

float dequeue(void) {
if (icount > 0) {
icount ——;
return queue_buffer[ifront ++];
} else

return 0.; /% or other special value

*/

23

Queue as array

e This would make for a very poor queue! Observe a queue
of capacity 4:

albjc

ot relr

e Enqueue ’ d’ to the rear of the queue:

albjc|d
}

t
front rear
The queue is now full.

Queue as array

e Dequeue ’"a’:

b

C

d

?
front

?

rear

e Enqueue ’ e’ to the rear: where should it go?
e Solution: use a circular (or “ring”) buffer
e ’e’ would go in the beginning of the array

25

Queue as array

¢ Need to modify void enqueue(float); and float dequeue(void);
e New void enqueue(float);:

void enqueue(float elem) {
if (icount < 100) {
queue_buffer[(ifront+icount) % 100] = elem;
icount++;
}
}

26

Queue as array

e New float dequeue(void);:

float dequeue(void) {

}

(icount > 0) {
float elem = queue_buffer[ifront];
icount ——;
ifront ++;
if (ifront == 100)
ifront = 0;
return elem;

} else

return 0.; /x or other special value x/

e Why would using “front” and “rear” counters instead make
this harder?

27

Queue as linked list

e Store as linked list (dynamic allocation):

struct s_listnode {
float element;
struct s_listnode * pnext;

b
struct s_listnode xqueue_buffer = NULL; — start empty
e Let front be at beginning — no need to track front

e Rear is at end — we should track it:
struct s_listnode x«prear = NULL;

Mir 28

Queue as linked list

e Add element using void enqueue(float);

void enqueue(float elem) {

struct s _listnode xnew_node = /+ allocate new node x/
(struct s_listnode x)malloc(sizeof(struct s_listnode))

new_node—>element = elem;

new_node—>pnext = NULL; /« at rear =x/

if (prear)
prear—>pnext = new_node;

else /x empty x/
queue_buffer = new_node;

prear = new_node;

}

e Adding an element doesn’t affect the front if the queue is
not empty

Mir 29

Queue as linked list

¢ Remove element using float dequeue(void);

float dequeue(void) {

if (queue_buffer) {
struct s_listnode xpelem = queue_buffer;
float elem = queue_buffer—>element;
queue_buffer = pelem—>pnext;
if (pelem == prear) /x at end =x/

prear = NULL;

free (pelem); /« remove node from memory x/
return elem;

} else
return 0.; /% or other special value x/

}

e Removing element doesn’t affect rear unless resulting
queue is empty

Mir 30

A simple calculator

e Stacks and queues allow us to design a simple expression
evaluator

e Prefix, infix, postfix notation: operator before, between, and
after operands, respectively

Infix | Prefix | Postfix

A+B +AB AB+

A*B-C -*ABC AB*C-
(A+B)*(C-D)|*+AB-CD|AB+CD-*

¢ Infix more natural to write, postfix easier to evaluate

Mir 31

Infix to postfix

e "Shunting yard algorithm" - Dijkstra (1961): input and
output in queues, separate stack for holding operators
e Simplest version (operands and binary operators only):
1. dequeue token from input
2. if operand (number), add to output queue
3. if operator, then pop operators off stack and add to output
queue as long as
o top operator on stack has higher precedence, or
e top operator on stack has same precedence and is
left-associative
and push new operator onto stack
return to step 1 as long as tokens remain in input
pop remaining operators from stack and add to output
queue

oA

32

Infix to postfix example

e Infix expression: A+B*C-D

Token | Output queue | Operator stack
A A

+ A +

B AB +

* AB +"

C ABC + ¥

- ABC~+ -

D ABC*+D -

(end) | ABC*+D-

¢ Postfix expression: ABC * + D -
e What if expression includes parentheses?

33

Example with parentheses

e Infix expression: (A+B)*(C-D)

Token

Output queue

Operator stack

- I

VUIOA

(end)

A

A

AB
AB +
AB+
AB +
AB+C
AB+C
AB+CD
AB+CD-
AB+CD-*

(
(
(
(

+
+

* *
—~ A~~~

* *

e Postfix expression: AB+CD-*

34

Evaluating postfix

o Postfix evaluation very easy with a stack:

1.
2.
3.

4.
5.

dequeue a token from the postfix queue

if token is an operand, push onto stack

if token is an operator, pop operands off stack (2 for binary
operator); push result onto stack

repeat until queue is empty

item remaining in stack is final result

35

Postfix evaluation example

e Postfix expression: 34 +51 -~
Token | Stack
3
34
7
75
751
- 74
* 28
(end) | answer = 28
¢ Extends to expressions with functions, unary operators

e Performs evaluation in one pass, unlike with prefix notation

- o+ WO

Mir 36

Summary

Topics covered:
¢ Pointers to pointers
¢ pointer and string arrays
o multidimensional arrays
¢ Data structures

e stack and queue
¢ implemented as arrays and linked lists
¢ writing a calculator

37

MIT OpenCourseWare
http://ocw.mit.edu

6.087 Practical Programming in C
January (IAP) 2010

For information about citing these materials or our Terms of Use,visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Review
	More about Pointers
	Pointers to Pointers
	Pointer Arrays
	Multidimensional Arrays

	Data Structures
	Stacks
	Queues
	Application: Calculator

