6.087 Lecture 6 — January 19, 2010

@ Review

Review: pointers

Pointers: memory address of variables
‘&’ (address of) operator.

Declaring: int x=10; int * px= &x;
Dereferencing: #px=20;

Pointer arithmetic:

e sizeof ()
¢ incrementing/decrementing
¢ absolute value after operation depends on pointer datatype.

Review: string.h

String copy: strcpy (), strncpy ()

Comparison: strcmp () , strncmp ()
Length: strlen ()

Concatenation: strcat ()

Search: strchr (), strstr ()

Searching and sorting

Searching

e Linear search: O(n)

¢ Binary search: O(logn). The array has to be sorted first.
Sorting

e Insertion sort: O(n?)

e Quick sort: O(nlogn)

6.087 Lecture 6 — January 19, 2010

@ User defined datatype
e Structures
e Unions
o Bitfields

Structure

Definition: A structure is a collection of related variables (of
possibly different types) grouped together under a single name.
This is a an example of composition—building complex
structures out of simple ones.

Examples:

struct point

{

int x;
int y;
b

/*notice the

; at the endx/

struct employee

{

char fname[100];
char Iname[100];
int age;

}s

/+*members of different
type */

Structure

struct defines a new datatype.

The name of the structure is optional.

struct {...} x,y,z;

The variables declared within a structure are called its
members

Variables can be declared like any other built in data-type.
struct point ptA;

Initialization is done by specifying values of every member.
struct point ptA={10,20};

Assignment operator copies every member of the structure
(be careful with pointers).

Structure (cont.)

More examples:

struct triangle

{

struct point ptA;
struct point piB;
struct point ptC;
b

/+*members can be structures

struct chain_element

{
int data;
struct chain_elementx next
b
/*members can be
x/ self referential %/

Structure (cont.)

¢ Individual members can be accessed using ’.’ operator.
struct point pt={10,20}; int x=pt.x; int y=pt.y;

o |f structure is nested, multiple ’. are required

struct rectangle

{

struct point tl;/«top left «/
struct point br;/xbot rightx/
1
struct rectangle rect;

int tlx=rect.tl.x; /«xnestedsx/
int tly=rect.tl.y;

Structure pointers

e Structures are copied element wise.
e For large structures it is more efficient to pass pointers.

void foo(struct point « pp); struct point pt; foo(&pt)

Members can be accesses from structure pointers using
’->’ operator.

struct point p={10,20};

struct pointx pp=&p;

pp—>x = 10; /xchanges p.x:x/

int y= pp—>y; /«same as y=p.y:x*/

Other ways to access structure members?

struct point p={10,20};

struct pointx pp=8&p;

(xpp).x = 10; /«xchanges p.xx/

int y= (xpp).y; /«xsame as y=p.yx/

why is the () required?

Arrays of structures

Declaring arrays of int: int x[10];

Declaring arrays of structure: struct point p[10];
Initializing arrays of int: int x[4]={0,20,10,2};
Initializing arrays of structure:

struct point p[3]={0,1,10,20,30,12};

struct point p [3]={{0,1},{10,20},{30,12}};

Size of structures

The size of a structure is greater than or equal to the sum
of the sizes of its members.

Alignment

struct {
char c;
/«padding x/
int i;

Why is this an important issue? libraries, precompiled files,
SIMD instructions.

Members can be explicitly aligned using compiler
extensions.

__attribute__ ((aligned(x))) /«xgccs/
__declspec((aligned(x))) /«MSVCx/

10

Union

A union is a variable that may hold objects of different
types/sizes in the same memory location. Example:

union data
{

int idata;

float fdata;

charx sdata;
} d1,d2,d3;
dil.idata=10;
d1.fdata=3.14F;
d1.sdata="hello world";

11

Unions (cont.)

¢ The size of the union variable is equal to the size of its
largest element.

¢ Important: The compiler does not test if the data is being
read in the correct format.
union data d; d.idata=10; float f=d.fdata; /« will give junks/

¢ A common solution is to maintain a separate variable.

enum dtype{INT,FLOAT,CHAR};
struct variant

{

union data d;

enum dtype t;

b

12

Bit fields

Definition: A bit-field is a set of adjacent bits within a single
'word’. Example:

struct flag{

unsigned int is_color:1;
unsignhed int has_sound:1;
unsigned int is_ntsc:1;

1

¢ the number after the colons specifies the width in bits.
e each variables should be declared as unsigned int

Bit fields vs. masks

CLR=0x1,SND=0x2,NTSC=0x4; struct flag f;

X|= CLR; x|=SND; x|=NTSC f.has_sound=1;f.is_color=1;
x&= ~CLR; x&=~SND; f.has_sound=0;f.is_color=0;

if (x & CLR || x& NTSC) if (f.is_color || f.has_sound)

Mir 13

6.087 Lecture 6 — January 19, 2010

@ Data structure
e Memory allocation
e Linked lists
@ Binary trees

14

Digression: dynamic memory allocation

void+ malloc(size_t n)
e malloc () allocates blocks of memory

e returns a pointer to unitialized block of memory on
success

e returns NULL on failure.

e the returned value should be cast to appropriate type using
(). intx ip=(int*)malloc(sizeof(int)x100)
voidx calloc(size_t n,size t size)

¢ allocates an array of n elements each of which is 'size’
bytes.

e initializes memory to 0
void free(voidsx)
e Frees memory allocated my malloc()
e Common error: accessing memory after calling free

Mir 14

Linked list

Definition: A dynamic data structure that consists of a
sequence of records where each element contains a link to the
next record in the sequence.
e Linked lists can be singly linked, doubly linked or circular.
For now, we will focus on singly linked list.
e Every node has a payload and a link to the next node in
the list.
e The start (head) of the list is maintained in a separate
variable.
¢ End of the list is indicated by NULL (sentinel).

12| 1199 &1 37| >

Mir 15

Linked list

struct node

{

int data;/xpayloadx/

struct nodex next;

1

struct nodex head;/xbeginningx/

Linked list vs. arrays

linked-list | array
size dynamic | fixed
indexing | O(n) O(1)
inserting | O(1) O(n)
deleting | O(1) O(n)

16

Linked list

Creating new element:

struct nodex nalloc(int data)
{
struct nodex p=(struct nodex)malloc(sizeof(node));
if (p!=NULL)
{
p—>data=data;
p—>next=NULL;
}

return p;

17

Linked list

Adding elements to front:

struct nodex addfront(struct nodex head,int data)
{

struct nodex p=nalloc(data);

if (p==NULL) return head;

p—>next=head;

return p;

18

Linked list

lterating:
for (p=head;p!=NULL;p=p—>next)
/«do somethingx/

for (p=head;p—>next!=NULL;p=p—>next)
/+do something*/

19

Binary trees

e A binary tree is a dynamic data structure where each node
has at most two children. A binary search tree is a binary
tree with ordering among its children.

e Usually, all elements in the left subtree are assumed to be
"less” than the root element and all elements in the right

subtree are assumed to be "greater" than the root element.

20

Binary tree (cont.)

struct tnode

{
int data; /xpayloadx/

struct tnodex left;
struct tnodex right;

1

The operation on trees can be framed as recursive operations.

Traversal (printing,
searching): °
e pre-order: root, left
subtree, right subtree o °

e Inorder: left subtree, root,

righ’[subtree o ° ° °
e post-order: right subtree,

right subtree, root °

Mir 21

Binary tree (cont.)

Add node:

struct tnodex addnode(struct tnodex root,int data)

{

struct tnodex p=NULL;
/*termination condition x/
if (root==NULL)

/«allocate nodex/
/«return new rootx/
}
/«recursive call x/
else if (data< root—>data)
root—>left=addnode(root—left ,data)
else
root—>right=addnode(root—>right ,data)

22

MIT OpenCourseWare
http://ocw.mit.edu

6.087 Practical Programming in C
January (IAP) 2010

For information about citing these materials or our Terms of Use,visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Review
	User defined datatype
	Structures
	Unions
	Bitfields

	Data structure
	Memory allocation
	Linked lists
	Binary trees

