
6.087 Lecture 5 – January 15, 2010

Review

Pointers and Memory Addresses
Physical and Virtual Memory
Addressing and Indirection
Functions with Multiple Outputs

Arrays and Pointer Arithmetic

Strings
String Utility Functions

Searching and Sorting Algorithms
Linear Search
A Simple Sort
Faster Sorting
Binary Search

1

Review: Unconditional jumps

• goto keyword: jump somewhere else in the same function
• Position identified using labels
• Example (for loop) using goto:

{

i n t i = 0 , n = 20; / ∗ i n i t i a l i z a t i o n ∗ /

goto loop_cond ;

loop_body :
/ ∗ body o f loop here ∗ /
i ++;

loop_cond :

i f (i < n) / ∗ loop c on d i t i on ∗ /

goto loop_body ;

}

• Excessive use of goto results in “spaghetti” code

1

Review: I/O Functions

•	 I/O provided by stdio.h, not language itself
•	 Character I/O: putchar(), getchar(), getc(),
putc(), etc.

•	 String I/O: puts(), gets(), fgets(), fputs(), etc.
•	 Formatted I/O: fprintf(), fscanf(), etc.
•	 Open and close files: fopen(), fclose()

•	 File read/write position: feof(), fseek(), ftell(), etc.
. . . •

2

Review: printf() and scanf()

•	 Formatted output:
int printf (char format [], arg1, arg2, ...)

•	 Takes variable number of arguments
•	 Format specification:
%[flags][width][.precision][length]<type>

•	 types: d, i (int), u, o, x, X (unsigned int), e, E, f, F, g, G
(double), c (char), s (string)

•	 flags, width, precision, length - modify meaning and number
of characters printed

•	 Formatted input: scanf() - similar form, takes pointers to
arguments (except strings), ignores whitespace in input

3

Review: Strings and character arrays

•	 Strings represented in C as an array of characters (char [])
•	 String must be null-terminated (’\0’ at end)

Declaration: •

char str [] = "I am a string."; or

char str [20] = "I am a string.";

•	 strcpy() - function for copying one string to another
•	 More about strings and string functions today. . .

4

6.087 Lecture 5 – January 15, 2010

Review

Pointers and Memory Addresses
Physical and Virtual Memory
Addressing and Indirection
Functions with Multiple Outputs

Arrays and Pointer Arithmetic

Strings
String Utility Functions

Searching and Sorting Algorithms
Linear Search
A Simple Sort
Faster Sorting
Binary Search

5

Pointers and addresses

•	 Pointer: memory address of a variable
•	 Address can be used to access/modify a variable from

anywhere
•	 Extremely useful, especially for data structures
•	 Well known for obfuscating code

5

Physical and virtual memory

•	 Physical memory: physical resources where data can be
stored and accessed by your computer

cache
•
RAM•
hard disk •

•	 removable storage

•	 Virtual memory: abstraction by OS, addressable space
accessible by your code

6

Physical memory considerations

•	 Different sizes and access speeds
•	 Memory management – major function of OS
•	 Optimization – to ensure your code makes the best use of

physical memory available
•	 OS moves around data in physical memory during

execution
•	 Embedded processors – may be very limited

7

Virtual memory

•	 How much physical memory do I have?
Answer: 2 MB (cache) + 2 GB (RAM) + 100 GB (hard
drive) + . . .

•	 How much virtual memory do I have?
Answer: <4 GB (32-bit OS), typically 2 GB for Windows,
3-4 GB for linux

•	 Virtual memory maps to different parts of physical memory
•	 Usable parts of virtual memory: stack and heap

•	 stack: where declared variables go
•	 heap: where dynamic memory goes

8

Addressing variables

•	 Every variable residing in memory has an address!
What doesn’t have an address? •

•	 register variables
•	 constants/literals/preprocessor defines
•	 expressions (unless result is a variable)

•	 How to find an address of a variable? The & operator

i n t n = 4 ;

double p i = 3.14159;

i n t ∗pn = &n ; / ∗ address o f i n t e g e r n ∗ /

double ∗ ppi = &p i ; / ∗ address o f double p i ∗ /

•	 Address of a variable of type t has type t *

9

Dereferencing pointers

•	 I have a pointer – now what?
•	 Accessing/modifying addressed variable:

dereferencing/indirection operator *
/ ∗ p r i n t s " p i = 3.14159\n " ∗ /
p r i n t f ("pi = %g\n" ,∗ ppi) ;

/ ∗ p i now equals 7.14159 ∗ /
∗ ppi = ∗ ppi + ∗pn ;

•	 Dereferenced pointer like any other variable
•	 null pointer, i.e. 0 (NULL): pointer that does not reference

anything

10

Casting pointers

•	 Can explicitly cast any pointer type to any other pointer
type
ppi = (double ∗)pn; /∗ pn originally of type (int ∗) ∗/

•	 Implicit cast to/from void * also possible (more next
week. . .)

•	 Dereferenced pointer has new type, regardless of real type
of data

•	 Possible to cause segmentation faults, other
difficult-to-identify errors

•	 What happens if we dereference ppi now?

11

Functions with multiple outputs

•	 Consider the Extended Euclidean algorithm
ext_euclid(a,b) function from Wednesday’s lecture

•	 Returns gcd(a, b), x and y s.t. ax + by = gcd(a, b)

•	 Used global variables for x and y

•	 Can use pointers to pass back multiple outputs:
int ext_euclid(int a, int b, int ∗x, int ∗y);

•	 Calling ext_euclid(), pass pointers to variables to
receive x and y:

i n t x , y , g ;

/ ∗ assume a , b declared p rev i ous l y ∗ /
g	 = ex t _euc l i d (a , b ,&x ,&y) ;

•	 Warning about x and y being used before initialized

12

Accessing caller’s variables

• Want to write function to swap two integers
• Need to modify variables in caller to swap them
• Pointers to variables as arguments

void swap (i n t ∗x , i n t ∗y) {

i n t temp = ∗x ;

∗x = ∗y ;

∗y = temp ;

}

• Calling swap() function:

i n t a = 5 , b = 7 ;

swap(&a , &b) ;

/ ∗ now , a = 7 , b = 5 ∗ /

13

• Pointer invalid after variable passes out of scope

Variables passing out of scope

•	 What is wrong with this code?

#include < s t d i o . h>

char get_message () {∗
char msg [] = "Aren’t pointers fun?" ;
return msg ;

}

i n t main (void) {

char s t r i n g = get_message () ;
∗
puts (s t r i n g) ;

return 0;

}

14

Variables passing out of scope

• What is wrong with this code?

#include < s t d i o . h>

char get_message () {
∗
char msg [] = "Aren’t pointers fun?" ;
return msg ;

}

i n t main (void) {

char s t r i n g = get_message () ;
∗
puts (s t r i n g) ;

return 0;

}

• Pointer invalid after variable passes out of scope

14

6.087 Lecture 5 – January 15, 2010

Review

Pointers and Memory Addresses
Physical and Virtual Memory
Addressing and Indirection
Functions with Multiple Outputs

Arrays and Pointer Arithmetic

Strings
String Utility Functions

Searching and Sorting Algorithms
Linear Search
A Simple Sort
Faster Sorting
Binary Search

15

Arrays and pointers

•	 Primitive arrays implemented in C using pointer to block of
contiguous memory

•	 Consider array of 8 ints:
int arr [8];

•	 Accessing arr using array entry operator:
int a = arr [0];

•	 arr is like a pointer to element 0 of the array:
int ∗pa = arr ; int ∗pa = &arr [0]; ⇔

•	 Not modifiable/reassignable like a pointer

15

The sizeof() operator

•	 For primitive types/variables, size of type in bytes:
int s = sizeof(char); /∗ == 1 ∗/
double f; /∗ sizeof(f) == 8 ∗/ (64-bit OS)

•	 For primitive arrays, size of array in bytes:
int arr [8]; /∗ sizeof(arr) == 32 ∗/ (64-bit OS)
long arr [5]; /∗ sizeof(arr) == 40 ∗/ (64-bit OS)

•	 Array length:

/ ∗ needs to be on one l i n e when implemented ∗ /
#define ar ray _ leng th (a r r) (sizeof (a r r) == 0 ?

0	 : sizeof (a r r) / sizeof ((a r r) [0]))

•	 More about sizeof() next week. . .

16

• i = 12

Pointer arithmetic

•	 Suppose int ∗pa = arr ;

•	 Pointer not an int, but can add or subtract an int from a
pointer:
pa + i points to arr[i]

•	 Address value increments by i times size of data type
Suppose arr[0] has address 100. Then arr[3] has
address 112.

•	 Suppose char ∗ pc = (char ∗)pa; What value of i satisfies
(int ∗)(pc+i) == pa + 3?

17

Pointer arithmetic

•	 Suppose int ∗pa = arr ;

•	 Pointer not an int, but can add or subtract an int from a
pointer:
pa + i points to arr[i]

•	 Address value increments by i times size of data type
Suppose arr[0] has address 100. Then arr[3] has
address 112.

•	 Suppose char ∗ pc = (char ∗)pa; What value of i satisfies
(int ∗)(pc+i) == pa + 3?

i = 12 •

17

6.087 Lecture 5 – January 15, 2010

Review

Pointers and Memory Addresses
Physical and Virtual Memory
Addressing and Indirection
Functions with Multiple Outputs

Arrays and Pointer Arithmetic

Strings
String Utility Functions

Searching and Sorting Algorithms
Linear Search
A Simple Sort
Faster Sorting
Binary Search

18

Strings as arrays

•	 Strings stored as null-terminated character arrays (last
character == ’\0’)

•	 Suppose char str [] = "This is a string."; and
char ∗ pc = str ;

•	 Manipulate string as you would an array
∗(pc+10) = ’S’;
puts(str); /∗ prints "This is a String ." ∗/

18

String utility functions

•	 String functions in standard header string.h

•	 Copy functions: strcpy(), strncpy()
char ∗ strcpy(strto ,strfrom); – copy strfrom to strto
char ∗ strncpy(strto ,strfrom,n); – copy n chars from strfrom
to strto

•	 Comparison functions: strcmp(), strncmp()
int strcmp(str1,str2); – compare str1, str2; return 0 if
equal, positive if str1>str2, negative if str1<str2
int strncmp(str1,str2 ,n); – compare first n chars of str1 and
str2

•	 String length: strlen()
int strlen (str); – get length of str

19

More string utility functions

•	 Concatenation functions: strcat(), strncat()
char ∗ strcat (strto ,strfrom); – add strfrom to end of strto
char ∗ strncat(strto ,strfrom,n); – add n chars from strfrom to
end of strto

•	 Search functions: strchr(), strrchr()
char ∗ strchr (str ,c); – find char c in str, return pointer to
first occurrence, or NULL if not found
char ∗ strrchr (str ,c); – find char c in str, return pointer to
last occurrence, or NULL if not found

•	 Many other utility functions exist. . .

20

6.087 Lecture 5 – January 15, 2010

Review

Pointers and Memory Addresses
Physical and Virtual Memory
Addressing and Indirection
Functions with Multiple Outputs

Arrays and Pointer Arithmetic

Strings
String Utility Functions

Searching and Sorting Algorithms
Linear Search
A Simple Sort
Faster Sorting
Binary Search

21

Searching and sorting

• Basic algorithms
• Can make good use of pointers
• Just a few examples; not a course in algorithms
• Big-O notation

21

Searching an array

•	 Suppose we have an array of int’s
int arr [100]; /∗ array to search ∗/

•	 Let’s write a simple search function:

i n t l i nea r _search (i n t va l) {∗
i n t parr , parrend = a r r + a r ray _ leng th (a r r) ; ∗ ∗
for (pa r r = a r r ; pa r r < parrend ; par r ++) {

i f (∗ par r == va l)
return par r ;

}

return NULL;

}

22

A simple sort

•	 A simple insertion sort: O(n2)
•	 iterate through array until an out-of-order element found

insert out-of-order element into correct location •
•	 repeat until end of array reached

•	 Split into two functions for ease-of-use

i n t a r r [1 0 0] ; / ∗ ar ray to s o r t ∗ /

void sh i f t _e lemen t (unsigned i n t i) {
/ ∗ do i n s e r t i o n o f out−of−order element ∗ /

}

void i n s e r t i o n _ s o r t () {
/ ∗ main i n s e r t i o n s o r t loop ∗ /

/ ∗ c a l l sh i f t _e lemen t () f o r

each out−of−order element ∗ /

}

23

Shifting out-of-order elements

• Code for shifting the element

/ ∗ move prev ious elements down u n t i l

i n s e r t i o n po i n t reached ∗ /

void sh i f t _e lemen t (unsigned i n t i) {

i n t i v a l u e ;

/ ∗ guard aga ins t going ou ts ide ar ray ∗ /
for (i v a l u e = a r r [i] ; i && a r r [i −1] > i v a l u e ; i −−)

a r r [i] = a r r [i −1]; / ∗ move element down ∗ /
a r r [i] = i v a l u e ; / ∗ i n s e r t element ∗ /

}

24

Insertion sort

•	 Main insertion sort loop

/ ∗	 i t e r a t e u n t i l out−of−order element found ;
s h i f t the element , and cont inue i t e r a t i n g ∗ /

void i n s e r t i o n _ s o r t (void) {

unsigned i n t i , len = a r ray _ leng th (a r r) ;

for (i = 1 ; i < len ; i ++)

i f (a r r [i] < a r r [i −1])

sh i f t _e lemen t (i) ;

}

•	 Can you rewrite using pointer arithmetic instead of
indexing?

25

Quicksort

•	 Many faster sorts available (shellsort, mergesort,
quicksort, . . .)

•	 Quicksort: O(n log n) average; O(n2) worst case
•	 choose a pivot element
•	 move all elements less than pivot to one side, all elements

greater than pivot to other
•	 sort sides individually (recursive algorithm)

•	 Implemented in C standard library as qsort() in
stdlib.h

26

Quicksort implementation

• Select the pivot; separate the sides:

void qu ick_so r t (unsigned i n t l e f t ,
unsigned i n t r i g h t) {

unsigned i n t i , mid ;

i n t p i v o t ;

i f (l e f t >= r i g h t)

return ; / ∗ noth ing to s o r t ∗ /

/ ∗ p i v o t i s midpo in t ; move to l e f t s ide ∗ /

swap (a r r + l e f t , a r r + (l e f t + r i g h t) / 2) ;

p i v o t = a r r [mid = l e f t] ;

/ ∗	 separate i n t o s ide < p i v o t (l e f t +1 to mid)

and s ide >= p i v o t (mid+1 to r i g h t) ∗ /
for (i = l e f t +1; i <= r i g h t ; i ++)

i f (a r r [i] < p i v o t)

swap (a r r + ++mid , a r r + i) ;

[Kernighan and Ritchie. The C Programming Language. 2nd ed. Prentice
Hall, 1988.]	 © Prentice Hall. All rights reserved. This content is excluded from our Creative Commons license.

For more information, see http://ocw.mit.edu/fairuse.

27

http://ocw.mit.edu/fairuse

Quicksort implementation

•	 Restore the pivot; sort the sides separately:

/ ∗ r es to re p i v o t p o s i t i o n ∗ /
swap (a r r + l e f t , a r r +mid) ;
/ ∗ s o r t two s ides ∗ /
i f (mid > l e f t)

qu i ck _so r t (l e f t , mid −1);
i f (mid < r i g h t)

qu i ck _so r t (mid+1 , r i g h t) ;
}

•	 Starting the recursion:

quick_sort(0, array_length(arr) − 1);

[Kernighan and Ritchie. The C Programming Language. 2nd ed. Prentice
Hall, 1988.]

© Prentice Hall. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.

28

http://ocw.mit.edu/fairuse

Discussion of quicksort

•	 Not stable (equal-valued elements can get switched) in
present form

•	 Can sort in-place – especially desirable for low-memory
environments

•	 Choice of pivot influences performance; can use random
pivot

•	 Divide and conquer algorithm; easily parallelizeable
•	 Recursive; in worst case, can cause stack overflow on

large array

29

Searching a sorted array

•	 Searching an arbitrary list requires visiting half the
elements on average

•	 Suppose list is sorted; can make use of sorting
information:

•	 if desired value greater than value and current index, only
need to search after index

•	 each comparison can split list into two pieces
•	 solution: compare against middle of current piece; then

new piece guaranteed to be half the size
•	 divide and conquer!

•	 More searching next week. . .

30

Binary search

•	 Binary search: O(log n) average, worst case:

i n t binary_search (i n t va l) {∗
unsigned i n t L = 0 , R = a r ray _ leng th (a r r) , M;
while (L < R) {

M = (L+R− 1) /2 ;
i f (va l == a r r [M])

return a r r +M; / ∗ found ∗ /
else i f (va l < a r r [M])

R = M; / ∗ i n f i r s t h a l f ∗ /
else

L	 = M+1; / ∗ i n second h a l f ∗ /
}
return NULL; / ∗ not found ∗ /

}

31

Binary search

•	 Worst case: logarithmic time
•	 Requires random access to array memory

• on sequential data, like hard drive, can be slow
•	 seeking back and forth in sequential memory is wasteful
•	 better off doing linear search in some cases

•	 Implemented in C standard library as bsearch() in
stdlib.h

32

Summary

Topics covered:
• Pointers: addresses to memory

• physical and virtual memory
• arrays and strings
• pointer arithmetic

• Algorithms
• searching: linear, binary
• sorting: insertion, quick

33

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIT OpenCourseWare
http://ocw.mit.edu

6.087 Practical Programming in C
January (IAP) 2010

For information about citing these materials or our Terms of Use,visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Review
	Pointers and Memory Addresses
	Physical and Virtual Memory
	Addressing and Indirection
	Functions with Multiple Outputs

	Arrays and Pointer Arithmetic
	Strings
	String Utility Functions

	Searching and Sorting Algorithms
	Linear Search
	A Simple Sort
	Faster Sorting
	Binary Search

