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Review: Unconditional jumps


• goto keyword: jump somewhere else in the same function 
• Position identified using labels 
• Example (for loop) using goto: 

{

i n t i = 0 , n = 20; / ∗ i n i t i a l i z a t i o n ∗ /

goto loop_cond ;


loop_body : 
/ ∗ body o f loop here ∗ / 
i ++;


loop_cond :

i f ( i < n ) / ∗ loop c on d i t i on ∗ /


goto loop_body ;

}


• Excessive use of goto results in “spaghetti” code 
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Review: I/O Functions


•	 I/O provided by stdio.h, not language itself 
•	 Character I/O: putchar(), getchar(), getc(), 
putc(), etc. 

•	 String I/O: puts(), gets(), fgets(), fputs(), etc. 
•	 Formatted I/O: fprintf(), fscanf(), etc. 
•	 Open and close files: fopen(), fclose() 

•	 File read/write position: feof(), fseek(), ftell(), etc. 
. . . • 
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Review: printf() and scanf()


•	 Formatted output: 
int printf (char format [], arg1, arg2, ...) 

•	 Takes variable number of arguments 
•	 Format specification: 
%[flags][width][.precision][length]<type> 

•	 types: d, i (int), u, o, x, X (unsigned int), e, E, f, F, g, G 
(double), c (char), s (string) 

•	 flags, width, precision, length - modify meaning and number 
of characters printed 

•	 Formatted input: scanf() - similar form, takes pointers to 
arguments (except strings), ignores whitespace in input 
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Review: Strings and character arrays


•	 Strings represented in C as an array of characters (char [] ) 
•	 String must be null-terminated (’\0’ at end) 

Declaration: • 

char str [] = "I am a string."; or

char str [20] = "I am a string.";


•	 strcpy() - function for copying one string to another 
•	 More about strings and string functions today. . . 
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Pointers and addresses


•	 Pointer: memory address of a variable 
•	 Address can be used to access/modify a variable from 

anywhere 
•	 Extremely useful, especially for data structures 
•	 Well known for obfuscating code 
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Physical and virtual memory


•	 Physical memory: physical resources where data can be 
stored and accessed by your computer


cache
• 
RAM• 
hard disk • 

•	 removable storage 

•	 Virtual memory: abstraction by OS, addressable space 
accessible by your code 
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Physical memory considerations


•	 Different sizes and access speeds 
•	 Memory management – major function of OS 
•	 Optimization – to ensure your code makes the best use of 

physical memory available 
•	 OS moves around data in physical memory during 

execution 
•	 Embedded processors – may be very limited 
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Virtual memory


•	 How much physical memory do I have? 
Answer: 2 MB (cache) + 2 GB (RAM) + 100 GB (hard 
drive) + . . . 

•	 How much virtual memory do I have? 
Answer: <4 GB (32-bit OS), typically 2 GB for Windows, 
3-4 GB for linux 

•	 Virtual memory maps to different parts of physical memory 
•	 Usable parts of virtual memory: stack and heap 

•	 stack: where declared variables go 
•	 heap: where dynamic memory goes 
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Addressing variables


•	 Every variable residing in memory has an address! 
What doesn’t have an address? • 

•	 register variables 
•	 constants/literals/preprocessor defines 
•	 expressions (unless result is a variable) 

•	 How to find an address of a variable? The & operator 

i n t n = 4 ;

double p i = 3.14159;

i n t ∗pn = &n ; / ∗ address o f i n t e g e r n ∗ /

double ∗ ppi = &p i ; / ∗ address o f double p i ∗ /


•	 Address of a variable of type t has type t * 
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Dereferencing pointers


•	 I have a pointer – now what? 
•	 Accessing/modifying addressed variable: 

dereferencing/indirection operator * 
/ ∗ p r i n t s " p i = 3.14159\n " ∗ / 
p r i n t f ( "pi = %g\n" ,∗ ppi ) ; 

/ ∗ p i now equals 7.14159 ∗ / 
∗ ppi = ∗ ppi + ∗pn ; 

•	 Dereferenced pointer like any other variable 
•	 null pointer, i.e. 0 (NULL): pointer that does not reference 

anything 
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Casting pointers


•	 Can explicitly cast any pointer type to any other pointer 
type 
ppi = (double ∗)pn; /∗ pn originally of type ( int ∗) ∗/ 

•	 Implicit cast to/from void * also possible (more next 
week. . . ) 

•	 Dereferenced pointer has new type, regardless of real type 
of data 

•	 Possible to cause segmentation faults, other 
difficult-to-identify errors 

•	 What happens if we dereference ppi now? 
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Functions with multiple outputs


•	 Consider the Extended Euclidean algorithm 
ext_euclid(a,b) function from Wednesday’s lecture 

•	 Returns gcd(a, b), x and y s.t. ax + by = gcd(a, b) 

•	 Used global variables for x and y 

•	 Can use pointers to pass back multiple outputs: 
int ext_euclid( int a, int b, int ∗x, int ∗y); 

•	 Calling ext_euclid(), pass pointers to variables to 
receive x and y:


i n t x , y , g ;

/ ∗ assume a , b declared p rev i ous l y ∗ / 
g	 = ex t _euc l i d ( a , b ,&x ,&y ) ; 

•	 Warning about x and y being used before initialized 
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Accessing caller’s variables


• Want to write function to swap two integers 
• Need to modify variables in caller to swap them 
• Pointers to variables as arguments 

void swap ( i n t ∗x , i n t ∗y ) {

i n t temp = ∗x ;

∗x = ∗y ;

∗y = temp ;


} 

• Calling swap() function: 

i n t a = 5 , b = 7 ;

swap(&a , &b ) ;

/ ∗ now , a = 7 , b = 5 ∗ / 
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• Pointer invalid after variable passes out of scope

Variables passing out of scope


•	 What is wrong with this code? 

#include < s t d i o . h> 

char get_message ( ) {∗ 
char msg [ ] = "Aren’t pointers fun?" ; 
return msg ; 

} 

i n t main ( void ) {

char s t r i n g = get_message ( ) ;
∗ 
puts ( s t r i n g ) ;

return 0;


}
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Arrays and pointers


•	 Primitive arrays implemented in C using pointer to block of 
contiguous memory 

•	 Consider array of 8 ints: 
int arr [8]; 

•	 Accessing arr using array entry operator: 
int a = arr [0]; 

•	 arr is like a pointer to element 0 of the array: 
int ∗pa = arr ; int ∗pa = &arr [0]; ⇔ 

•	 Not modifiable/reassignable like a pointer 
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The sizeof() operator


•	 For primitive types/variables, size of type in bytes: 
int s = sizeof(char); /∗ == 1 ∗/ 
double f; /∗ sizeof( f ) == 8 ∗/ (64-bit OS) 

•	 For primitive arrays, size of array in bytes: 
int arr [8]; /∗ sizeof(arr ) == 32 ∗/ (64-bit OS) 
long arr [5]; /∗ sizeof(arr ) == 40 ∗/ (64-bit OS) 

•	 Array length: 

/ ∗ needs to be on one l i n e when implemented ∗ / 
#define ar ray _ leng th ( a r r ) ( sizeof ( a r r ) == 0 ? 

0	 : sizeof ( a r r ) / sizeof ( ( a r r ) [ 0 ] ) ) 

•	 More about sizeof() next week. . . 
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• i = 12

Pointer arithmetic


•	 Suppose int ∗pa = arr ; 

•	 Pointer not an int, but can add or subtract an int from a 
pointer: 
pa + i points to arr[i] 

•	 Address value increments by i times size of data type 
Suppose arr[0] has address 100. Then arr[3] has 
address 112. 

•	 Suppose char ∗ pc = (char ∗)pa; What value of i satisfies 
( int ∗)(pc+i) == pa + 3? 
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Strings as arrays


•	 Strings stored as null-terminated character arrays (last 
character == ’\0’) 

•	 Suppose char str [] = "This is a string."; and 
char ∗ pc = str ; 

•	 Manipulate string as you would an array 
∗(pc+10) = ’S’; 
puts(str ); /∗ prints "This is a String ." ∗/ 
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String utility functions


•	 String functions in standard header string.h 

•	 Copy functions: strcpy(), strncpy() 
char ∗ strcpy( strto ,strfrom ); – copy strfrom to strto 
char ∗ strncpy( strto ,strfrom,n); – copy n chars from strfrom 
to strto 

•	 Comparison functions: strcmp(), strncmp() 
int strcmp(str1,str2 ); – compare str1, str2; return 0 if 
equal, positive if str1>str2, negative if str1<str2 
int strncmp(str1,str2 ,n); – compare first n chars of str1 and 
str2 

•	 String length: strlen() 
int strlen ( str ); – get length of str 
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More string utility functions


•	 Concatenation functions: strcat(), strncat() 
char ∗ strcat ( strto ,strfrom ); – add strfrom to end of strto 
char ∗ strncat( strto ,strfrom,n); – add n chars from strfrom to 
end of strto 

•	 Search functions: strchr(), strrchr() 
char ∗ strchr ( str ,c ); – find char c in str, return pointer to 
first occurrence, or NULL if not found 
char ∗ strrchr ( str ,c ); – find char c in str, return pointer to 
last occurrence, or NULL if not found 

•	 Many other utility functions exist. . . 
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Searching and sorting


• Basic algorithms 
• Can make good use of pointers 
• Just a few examples; not a course in algorithms 
• Big-O notation 
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Searching an array


•	 Suppose we have an array of int’s 
int arr [100]; /∗ array to search ∗/ 

•	 Let’s write a simple search function: 

i n t l i nea r _search ( i n t va l ) {∗ 
i n t parr , parrend = a r r + a r ray _ leng th ( a r r ) ; ∗ ∗ 
for ( pa r r = a r r ; pa r r < parrend ; par r ++) { 

i f (∗ par r == va l ) 
return par r ;


}

return NULL;


} 
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A simple sort


•	 A simple insertion sort: O(n2) 
•	 iterate through array until an out-of-order element found 

insert out-of-order element into correct location • 
•	 repeat until end of array reached 

•	 Split into two functions for ease-of-use 

i n t a r r [ 1 0 0 ] ; / ∗ ar ray to s o r t ∗ / 

void sh i f t _e lemen t ( unsigned i n t i ) { 
/ ∗ do i n s e r t i o n o f out−of−order element ∗ / 

} 

void i n s e r t i o n _ s o r t ( ) { 
/ ∗ main i n s e r t i o n s o r t loop ∗ /

/ ∗ c a l l sh i f t _e lemen t ( ) f o r


each out−of−order element ∗ /

} 
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Shifting out-of-order elements


• Code for shifting the element 

/ ∗ move prev ious elements down u n t i l

i n s e r t i o n po i n t reached ∗ /


void sh i f t _e lemen t ( unsigned i n t i ) {

i n t i v a l u e ;

/ ∗ guard aga ins t going ou ts ide ar ray ∗ / 
for ( i v a l u e = a r r [ i ] ; i && a r r [ i −1] > i v a l u e ; i −−) 

a r r [ i ] = a r r [ i −1]; / ∗ move element down ∗ / 
a r r [ i ] = i v a l u e ; / ∗ i n s e r t element ∗ / 

} 
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Insertion sort


•	 Main insertion sort loop 

/ ∗	 i t e r a t e u n t i l out−of−order element found ; 
s h i f t the element , and cont inue i t e r a t i n g ∗ / 

void i n s e r t i o n _ s o r t ( void ) {

unsigned i n t i , len = a r ray _ leng th ( a r r ) ;

for ( i = 1 ; i < len ; i ++)


i f ( a r r [ i ] < a r r [ i −1])

sh i f t _e lemen t ( i ) ;


}


•	 Can you rewrite using pointer arithmetic instead of 
indexing? 
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Quicksort


•	 Many faster sorts available (shellsort, mergesort, 
quicksort, . . . ) 

•	 Quicksort: O(n log n) average; O(n2) worst case 
•	 choose a pivot element 
•	 move all elements less than pivot to one side, all elements 

greater than pivot to other 
•	 sort sides individually (recursive algorithm) 

•	 Implemented in C standard library as qsort() in 
stdlib.h 
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Quicksort implementation


• Select the pivot; separate the sides: 

void qu ick_so r t ( unsigned i n t l e f t , 
unsigned i n t r i g h t ) {


unsigned i n t i , mid ;

i n t p i v o t ;

i f ( l e f t >= r i g h t )


return ; / ∗ noth ing to s o r t ∗ /

/ ∗ p i v o t i s midpo in t ; move to l e f t s ide ∗ /

swap ( a r r + l e f t , a r r + ( l e f t + r i g h t ) / 2 ) ;

p i v o t = a r r [ mid = l e f t ] ;

/ ∗	 separate i n t o s ide < p i v o t ( l e f t +1 to mid ) 

and s ide >= p i v o t ( mid+1 to r i g h t ) ∗ / 
for ( i = l e f t +1; i <= r i g h t ; i ++)


i f ( a r r [ i ] < p i v o t )

swap ( a r r + ++mid , a r r + i ) ;


[Kernighan and Ritchie. The C Programming Language. 2nd ed. Prentice 
Hall, 1988.]	 © Prentice Hall. All rights reserved. This content is excluded from our Creative Commons license. 

For more information, see http://ocw.mit.edu/fairuse. 
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Quicksort implementation


•	 Restore the pivot; sort the sides separately: 

/ ∗ r es to re p i v o t p o s i t i o n ∗ / 
swap ( a r r + l e f t , a r r +mid ) ; 
/ ∗ s o r t two s ides ∗ / 
i f ( mid > l e f t ) 

qu i ck _so r t ( l e f t , mid −1); 
i f ( mid < r i g h t ) 

qu i ck _so r t ( mid+1 , r i g h t ) ; 
} 

•	 Starting the recursion:

quick_sort(0, array_length(arr ) − 1);


[Kernighan and Ritchie. The C Programming Language. 2nd ed. Prentice 
Hall, 1988.] 

© Prentice Hall. All rights reserved. This content is excluded from our Creative Commons license. 
For more information, see http://ocw.mit.edu/fairuse. 
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Discussion of quicksort


•	 Not stable (equal-valued elements can get switched) in 
present form 

•	 Can sort in-place – especially desirable for low-memory 
environments 

•	 Choice of pivot influences performance; can use random 
pivot 

•	 Divide and conquer algorithm; easily parallelizeable 
•	 Recursive; in worst case, can cause stack overflow on 

large array 
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Searching a sorted array


•	 Searching an arbitrary list requires visiting half the 
elements on average 

•	 Suppose list is sorted; can make use of sorting 
information: 

•	 if desired value greater than value and current index, only 
need to search after index 

•	 each comparison can split list into two pieces 
•	 solution: compare against middle of current piece; then 

new piece guaranteed to be half the size 
•	 divide and conquer! 

•	 More searching next week. . . 

30 



Binary search


•	 Binary search: O(log n) average, worst case: 

i n t binary_search ( i n t va l ) {∗ 
unsigned i n t L = 0 , R = a r ray _ leng th ( a r r ) , M; 
while ( L < R) { 

M = ( L+R− 1) /2 ; 
i f ( va l == a r r [M] ) 

return a r r +M; / ∗ found ∗ / 
else i f ( va l < a r r [M] ) 

R = M; / ∗ i n f i r s t h a l f ∗ / 
else 

L	 = M+1; / ∗ i n second h a l f ∗ / 
} 
return NULL; / ∗ not found ∗ / 

} 
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Binary search


•	 Worst case: logarithmic time 
•	 Requires random access to array memory 

• on sequential data, like hard drive, can be slow 
•	 seeking back and forth in sequential memory is wasteful 
•	 better off doing linear search in some cases 

•	 Implemented in C standard library as bsearch() in 
stdlib.h 
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Summary


Topics covered: 
• Pointers: addresses to memory 

• physical and virtual memory 
• arrays and strings 
• pointer arithmetic 

• Algorithms 
• searching: linear, binary 
• sorting: insertion, quick 
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