6.087 Lecture 4 — January 14, 2010

@ Review

Blocks

Blocks combine multiple statements into a single unit.
Can be used when a single statement is expected.

Creates a local scope (variables declared inside are local
to the block).

Blocks can be nested.

int x=0;

{
int y=0; /xboth x and y visible «/

}

/xonly x visible %/

Conditional blocks

if ... else..else if is used for conditional branching of execution

if (cond)
{
/+code executed if cond is truex/
1
else
{

/+code executed if cond is false*/

}

Conditional blocks

switch..case is used to test multiple conditions (more efficient
than if else ladders).

switch (opt)
{
case ’'A’:
/«execute if opt=="A’x/
break ;
case ’'B’:
case 'C’:
/xexecute if opt=="B’ || opt=="C’=x/
default:
}

lterative blocks

¢ while loop tests condition before execution of the block.
¢ do..while loop tests condition after execution of the block.
e for loop provides initialization, testing and iteration together.

6.087 Lecture 4 — January 14, 2010

@ Control flow

goto

¢ goto allows you to jump unconditionally to arbitrary part of
your code (within the same function).

e the location is identified using a label.

e alabel is a named location in the code. It has the same
form as a variable followed by a’”’

start:
{
if (cond)
goto outside;
/+some code x/
goto start;
1
outside:
/+outside blockx/

Spaghetti code

Dijkstra. Go To Statement Considered Harmful.
Communications of the ACM 11(3),1968

e Excess use of goto creates sphagetti code.
¢ Using goto makes code harder to read and debug.
¢ Any code that uses goto can be written without using one.

error handling

Language like C++ and Java provide exception mechanism to
recover from errors. In C, goto provides a convenient way to exit
from nested blocks.

cont_flag=1;

for (..)
for (..) {
{ for(init;cont_flag;iter)
for (..) {
{ if (error_cond)
if (error_cond) {
goto error; cont_flag=0;
/«skips 2 blocks x/ break ;
1 1
} /xinner loop x/
error: }

if (lcont_flag) break;
/«xouter loop*/

}

6.087 Lecture 4 — January 14, 2010

e |/O
e Standard I/O
e String I/0O

e File I/O

Preliminaries

Input and output facilities are provided by the standard
library <stdio.h> and not by the language itself.

A text stream consists of a series of lines ending with 7 \n".
The standard library takes care of conversion from
I4 \r\nl _r \1'1'

A binary stream consists of a series of raw bytes.
The streams provided by standard library are buffered.

Standard input and output

int putchar(int)
¢ putchar(c) puts the character ¢ on the standard output.
e it returns the character printed or EOF on error.
int getchar()
¢ returns the next character from standard input.
e it returns EOF on error.

Standard input and output

What does the following code do?

int main ()

{

char c;
while ((c=getchar ())!=EOF)

if(c>="n" && c<="272")
c=C—'A'+"a’;
putchar(c);

return O,

}

To use a file instead of standard input, use ’<’ operator (*nix).
e Normal invocation: ./a.out

¢ Input redirection: a.out < file.txt. Treats file.txt as source of
standard input.This is an OS feature, not a language
feature.

Mir 10

Standard output:formatted

int printf (char format[],arg1,arg2 ,...)
e printf() can be used for formatted output.
e It takes in a variable number of arguments.
e It returns the number of characters printed.

¢ The format can contain literal strings as well as format
specifiers (starts with %).
Examples:
printf("hello world\n");

printf ("sd\n" ,10);/«xformat: %d (integer),argument:10 x/
printf("Prices:%d and %d\n",10,20);

Mir 11

printf format specification

The format specification has the following components
Y%[flags][width][. precision][length]<type>

type:
type meaning example
d,i integer printf ("$d",10); /«prints 10x/
X, X integer (hex) printf ("%x",10); /«print Oxas/
u unsigned integer printf ("$u",10); /«prints 10x/
C character printf ("sc",” A7); /xprints Asx/
s string printf ("ss™ "hello")'/*prints hellox/
f float printf (" £",2.3); /x prints 2.3%/
d double printf ("sd" 23) /xprints 2.3/
eE float(exp) 1€3,1.2E3,1E-3
% literal % printf ("sd $%",10); /+prints 10%:/

12

printf format specification (cont.)

Y%[flags][width][. precision][modifier]<type>

width:

format

output

printf ("%d",10)

ll1 0"

printf ("%4d",10)

bb10 (b:space)

hello

(
printf ("%s","hello")
printf ("$7s","hello")

bbhello

13

printf format specification (cont.)

Y%[flags][width][. precision][modifier]<type>

flag:

format output
printf ("sd, $+d, $+d4",10,—-10) | 10,+10,-10
printf ("/04d" 10) 0010

printf ("$7s","hello™) bbhello
printf ("$-7s","hello") hellobb

14

printf format specification (cont.)

%[flags][width][. precision][modifier]<type>

precision:
format output
prlntf("%.Zf,%.Of 1.141,1.141) 1.14,1
printf ("% .2e,%.0e,1.141,100.00) | 1.14e+00,1e+02
printf('%.45","hello") hell
printf ("$.1s","hello™) h
Mir 15

printf format specification (cont.)

%[flags][width][. precision][modifier]<type>
modifier:

modifier

meaning

h

interpreted as short. Use with i,d,o,u,x

interpreted as long. Use with i,d,o,u,x

L

interpreted as double. Use with e,f,g

16

Digression: character arrays

Since we will be reading and writing strings, here is a brief
digression

¢ strings are represented as an array of characters
e C does not restrict the length of the string. The end of the
string is specified using 0.
For instance, "hello" is represented using the array
{*hr,rer,717,717,7\0"}.
Declaration examples:
e char str[]="hello";/xcompiler takes care of sizex/
e char str[10]="hello"; /xmake sure the array is large enoughx/
e charstr[]={'h’",’e’,”1",71",0};
Note: use \" if you want the string to contain ".

Mir 17

Digression: character arrays

Comparing strings: the header file <string.h> provides the
function int strcmp(char s[],char t[]) that compares two strings in
dictionary order (lower case letters come after capital case).

¢ the function returns a value <0 if s comes before t

e the function return a value 0 if s is the same as t

e the function return a value >0 if s comes after t

e strcmp is case sensitive
Examples

e strcmp("A","a") /x<0x%/

e strcmp("IRONMAN","BATMAN") /x>0x%/
e stremp("aA","aA") /x==0x/
(

e stremp("aA","a") /«>0x/

18

Formatted input

int scanf(chars format ,...) is the input analog of printf.

scanf reads characters from standard input, interpreting
them according to format specification

Similar to printf, scanf also takes variable number of
arguments.

The format specification is the same as that for printf

When multiple items are to be read, each item is assumed
to be separated by white space.

It returns the number of items read or EOF.
Important: scanf ignores white spaces.

Important: Arguments have to be address of variables
(pointers).

19

Formatted input

int scanf(chars format ,...) is the input analog of printf.

Examples:
printf ("%d",x) scanf("%d",&x)
printf ("$104",x) scanf("%d",&x)
printf ("$£",f) scanf("%£",&f)
printf ("%s",str) scanf("%s",str) /xnote no & requireds/
printf ("&s",str) scanf("%20s",str) /«xnote no & requireds/
printf ("$s %s",fname,lname) | scanf("$20s %20s",fname,lname)

20

String input/output

Instead of writing to the standard output, the formatted data can
be written to or read from character arrays.
int sprintf (char string [], char format[],arg1,arg2)

e The format specification is the same as printf.
e The output is written to string (does not check size).

¢ Returns the number of character written or negative value
on error.

int sscanf(char str [], char format[],arg1,arg2)
¢ The format specification is the same as scanf;
e The input is read from str variable.

¢ Returns the number of items read or negative value on
error.

Mir 21

File I/0

So far, we have read from the standard input and written to the
standard output. C allows us to read data from text/binary files
using fopen().

FILE« fopen(char name[],char mode[])

e mode can be "r" (read only),"w" (write only),"a" (append)

among other options. "b" can be appended for binary files.

o fopen returns a pointer to the file stream if it exists or
NULL otherwise.

¢ We don’t need to know the details of the FILE data type.

¢ Important: The standard input and output are also FILE*
datatypes (stdin,stdout).

o Important: stderr corresponds to standard error
output(different from stdout).

22

File 1/0O(cont.)

int fclose (FILEx fp)
e closes the stream (releases OS resources).

o fclose() is automatically called on all open files when
program terminates.

23

File input

int getc(FILEx fp)

¢ reads a single character from the stream.
e returns the character read or EOF on error/end of file.

Note: getchar simply uses the standard input to read a
character. We can implement it as follows:
#define getchar() getc(stdin)

char[] fgets(char line [], int maxlen,FILEx fp)

e reads a single line (upto maxlen characters) from the input
stream (including linebreak).

e returns a pointer to the character array that stores the line
(read-only)

¢ return NULL if end of stream.

Mir 24

File output

int putc(int c,FILEx fp)
¢ writes a single character c to the output stream.
e returns the character written or EOF on error.

Note: putchar simply uses the standard output to write a
character. We can implement it as follows:
#define putchar(c) putc(c,stdout)

int fputs(char line [], FILEx fp)
¢ writes a single line to the output stream.
e returns zero on success, EOF otherwise.
int fscanf(FILE« fp,char format[],arg1,arg2)

¢ similar to scanf,sscanf
e reads items from input stream fp.

Mir 25

Command line input

¢ In addition to taking input from standard input and files, you
can also pass input while invoking the program.

e Command line parameters are very common in *nix
environment.

¢ So far, we have used int main() as to invoke the main
function. However, main function can take arguments that
are populated when the program is invoked.

26

Command line input (cont.)

int main(int argc,charx argv(])
e argc: count of arguments.
e argv[]: an array of pointers to each of the arguments

¢ note: the arguments include the name of the program as
well.

Examples:

e /cat a.txt b.txt (argc=3,argv[0]="cat" argv[1]="a.txt"
argv[2]="b.txt"

¢ /cat (argc=1,argv[0]="cat")

Mir 27

MIT OpenCourseWare
http://ocw.mit.edu

6.087 Practical Programming in C
January (IAP) 2010

For information about citing these materials or our Terms of Use,visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Review
	Control flow
	I/O
	Standard I/O
	String I/O
	File I/O

